8.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$.

分析 根據幾何體的三視圖,得出該幾何體是四棱錐,把該四棱錐放入棱長為2的正方體中,結合圖形求出它的體積.

解答 解:根據幾何體的三視圖,得;
該幾何體是四棱錐M-PSQN,
把該四棱錐放入棱長為2的正方體中,如圖所示;
所以該四棱錐的體積為
V=V三棱柱-V三棱錐=$\frac{1}{2}$×22×2-$\frac{1}{3}$×$\frac{1}{2}$×22×2=$\frac{8}{3}$.


故答案為:$\frac{8}{3}$.

點評 本題考查了空間幾何體三視圖的應用問題,解題的關鍵是根據三視圖得出幾何體的結構特征,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.使奇函數(shù)f(x)=sin(2x+α)在[-$\frac{π}{4}$,0]上為減函數(shù)的α的值可以是( 。
A.0B.$\frac{π}{2}$C.πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設M、分別是BD和AE的中點,
①AD⊥MN;      ②MN∥面CDE;
③MN∥CE;      ④MN、CE異面.
其中正確結論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在等比數(shù)列{an}中,a1=-3,a2=-6,則a4的值為(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列函數(shù)中,對于任意x∈R,同時滿足條件f(x)=f(-x)和f(x+π)=f(x)的函數(shù)是( 。
A.f(x)=sinxB.f(x)=sin2xC.f(x)=cosxD.f(x)=cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=cos2x+sinxcosx-1的最小正周期是π,單調遞增區(qū)間是[kπ-$\frac{3π}{8}$,2kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作與截面PBC1平行的截面,則截面的面積是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,點D,E,F(xiàn)分別為OA,OB,OC的中點,BD與AE相交于H,CD與AF相交于G,將△ABO沿OA折起,使二面角B-OA-C為直二面角.
(Ⅰ)在底面△BOC的邊BC上是否存在一點P,使得OP⊥GH,若存在,請計算BP的長度;若不存在,請說明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.橢圓$\frac{x^2}{4}+\frac{y^2}{2+k}=1$的離心率為$\frac{1}{2}$,則k的值為(  )
A.$-\frac{10}{3}$B.$\frac{10}{3}$C.$\frac{10}{3}$或1D.$-\frac{10}{3}$或1

查看答案和解析>>

同步練習冊答案