3.下列函數(shù)中,對于任意x∈R,同時(shí)滿足條件f(x)=f(-x)和f(x+π)=f(x)的函數(shù)是( 。
A.f(x)=sinxB.f(x)=sin2xC.f(x)=cosxD.f(x)=cos2x

分析 根據(jù)題意,要求函數(shù)滿足條件f(x)=f(-x)和f(x+π)=f(x),則該函數(shù)必須是偶函數(shù)且周期為π,據(jù)此由三角函數(shù)的性質(zhì)依次分析選項(xiàng)四個(gè)函數(shù)的奇偶性與周期性即可得答案.

解答 解:根據(jù)題意,要求函數(shù)滿足條件f(x)=f(-x)和f(x+π)=f(x),則該函數(shù)必須是偶函數(shù)且周期為π,
據(jù)此依次分析選項(xiàng)可得:
對于A、f(x)=sinx是奇函數(shù)且周期為2π,不符合題意;
對于B、f(x)=sin2x是奇函數(shù)且周期為$\frac{2π}{2}$=π,不符合題意;
對于C、f(x)=cosx是偶函數(shù)且周期為2π,不符合題意;
對于D、f(x)=cos2x是偶函數(shù)且周期為$\frac{2π}{2}$=π,符合題意;
故選:D.

點(diǎn)評 本題考查三角函數(shù)的性質(zhì),關(guān)鍵是由f(x)=f(-x)和f(x+π)=f(x)分析出函數(shù)的周期與奇偶性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)y=($\frac{1}{2}$)x-m的圖象不經(jīng)過第四象限,則m∈(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)y=sinx在區(qū)間$[t,t+\frac{π}{2}]$上的最大值為M(t),最小值為m(t),則M(t)-m(t)的最小值和最大值分別為( 。
A.1,2B.$1,\sqrt{2}$C.$1-\frac{{\sqrt{2}}}{2},1$D.$1-\frac{{\sqrt{2}}}{2},\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)判斷f(x)在[1,+∞)的單調(diào)性,并證明你的結(jié)論;
(2)求函數(shù)在$[{\frac{1}{2},2}]$上最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(1,k),$\overrightarrow$=(0,2),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α,β為銳角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,則α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S5=-20,則-6a4+3a5=(  )
A.-20B.4C.12D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$.
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)設(shè)函數(shù)f(x)在[t,t+4](t∈R)上的最大值為g(t),求g(t)的解析式.

查看答案和解析>>

同步練習(xí)冊答案