近年來我國(guó)為了全面建設(shè)小康社會(huì),出臺(tái)了各項(xiàng)政策,進(jìn)一步鞏固加強(qiáng)第一產(chǎn)業(yè),調(diào)整提高第二產(chǎn)業(yè),發(fā)展第三產(chǎn)業(yè).已知常德市有600萬人口,分別從事第一、二、三、產(chǎn)業(yè),為了應(yīng)對(duì)國(guó)際經(jīng)濟(jì)蕭條帶來的不利影響,該市實(shí)施“優(yōu)化重組,分流增效”的策略,對(duì)全市人口進(jìn)行部分崗位的調(diào)整.設(shè)常德市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬人,平均每人每年創(chuàng)造產(chǎn)值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強(qiáng)第三產(chǎn)業(yè).分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100).而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬元.
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少萬人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意得
0<x<100
(100-x)(1+2x%)a≥100a
,從而解得;
(2)設(shè)該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加f(x)(0<x≤50)萬元,從而可得f(x)=(100-x)(1+2x%)a-100a+1.2ax,利用配方法求最值.
解答: 解:(1)由題意得
0<x<100
(100-x)(1+2x%)a≥100a

解得,0<x≤50.
(2)設(shè)該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加f(x)(0<x≤50)萬元,
則f(x)=(100-x)(1+2x%)a-100a+1.2ax
=-
a
50
(x2-110x)=-
a
50
[(x-55)2-3 025],
∵x∈(0,50]時(shí),f(x)單調(diào)遞增,
∴x=50時(shí),f(x)max=60a,
即應(yīng)分流出50萬人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多.
點(diǎn)評(píng):本題考查了實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,同時(shí)考查了函數(shù)的最值問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求證:平面PAD與平面PAB垂直;
(2)求直線PC與直線AB所成角的余弦值.(請(qǐng)用空間向量知識(shí)求解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知2
AB
AC
=
3
|
AB
|•|
AC
|=3
BC
2
,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在14與
7
8
之間插入n個(gè)數(shù)組成等比數(shù)列,若各項(xiàng)總和為
77
8
,則此數(shù)列的項(xiàng)數(shù)( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商業(yè)集團(tuán)對(duì)所屬的200家連鎖店進(jìn)行評(píng)估,并依據(jù)得分(最低60分,最高100分,可以是小數(shù))將其分別評(píng)定為A、B、C、D四個(gè)等級(jí),評(píng)估標(biāo)準(zhǔn)如下表:
評(píng)估得分[60,70)[70,80)[80,90)[90,100)
評(píng)定類型DCBA
現(xiàn)將各連鎖店的評(píng)估分?jǐn)?shù)進(jìn)行統(tǒng)計(jì)分析,并將其畫成頻率分布直方圖如下.

(1)請(qǐng)補(bǔ)全頻率分布直方圖(畫出[70,80)那組對(duì)應(yīng)的小長(zhǎng)方形并標(biāo)上對(duì)應(yīng)高度);
(2)現(xiàn)欲用分層抽樣的方法從這200家連鎖店中抽取40家作為代表進(jìn)行座談會(huì),試問其中A、D類連鎖店分別應(yīng)抽取多少家?
(3)試根據(jù)頻率分布直方圖估計(jì)這200家連鎖店評(píng)估得分的中位數(shù)(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2ax+2,-4<x<1
(7-a)x+1-2a,x≤-4
在定義域上單調(diào)增,則實(shí)數(shù)a∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2-ax+b,集合A={x|f(x)=x}.
(1)若A={1,2},求函數(shù)f(x)的解析式;
(2)若F(x)=f(x)+2-a-a2且f(1)=0且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是(  )
A、若m⊥n,m⊥α,n?α,則n∥α
B、若m⊥β,α⊥β,則m∥α或m?α
C、若m⊥n,m⊥α,n⊥β,則α⊥β
D、若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列﹛an﹜中,對(duì)任意的n∈N+,a1+a2+…+an=2n-1,則a12+a22+…+an2為( 。
A、
1
3
(4n-1)
B、
1
3
(2n-1)
C、(2n-1)2
D、4n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案