設(shè)m,n是兩條不同的直線(xiàn),α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A、若m⊥n,m⊥α,n?α,則n∥α
B、若m⊥β,α⊥β,則m∥α或m?α
C、若m⊥n,m⊥α,n⊥β,則α⊥β
D、若m∥α,α⊥β,則m⊥β
考點(diǎn):空間中直線(xiàn)與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系求解.
解答: 解:若m⊥n,m⊥α,n?α,則由直線(xiàn)與平面的位置關(guān)系得n∥α,故A正確;
若m⊥β,α⊥β,則m∥α或m?α,故B正確;
若m⊥n,m⊥α,n⊥β,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若m∥α,α⊥β,則m與β有可能平行,故D錯(cuò)誤.
故選:D.
點(diǎn)評(píng):本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)16x2-9y2=144的離心率e=( 。
A、
25
16
B、
25
9
C、
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái)我國(guó)為了全面建設(shè)小康社會(huì),出臺(tái)了各項(xiàng)政策,進(jìn)一步鞏固加強(qiáng)第一產(chǎn)業(yè),調(diào)整提高第二產(chǎn)業(yè),發(fā)展第三產(chǎn)業(yè).已知常德市有600萬(wàn)人口,分別從事第一、二、三、產(chǎn)業(yè),為了應(yīng)對(duì)國(guó)際經(jīng)濟(jì)蕭條帶來(lái)的不利影響,該市實(shí)施“優(yōu)化重組,分流增效”的策略,對(duì)全市人口進(jìn)行部分崗位的調(diào)整.設(shè)常德市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬(wàn)人,平均每人每年創(chuàng)造產(chǎn)值a萬(wàn)元(a為正常數(shù)),現(xiàn)在決定從中分流x萬(wàn)人去加強(qiáng)第三產(chǎn)業(yè).分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100).而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬(wàn)元.
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問(wèn)應(yīng)分流出多少萬(wàn)人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某批發(fā)市場(chǎng)對(duì)某件商品(成本為5元/件)進(jìn)行了6天的試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)x(元)8.008.208.408.608.809.00
銷(xiāo)量y(件)908483807568
經(jīng)分析發(fā)現(xiàn)銷(xiāo)量y(件)與單價(jià)x(元)具有線(xiàn)性相關(guān)關(guān)系,且回歸直線(xiàn)方程為
?
y
=
?
b
•x+
?
a
(其中,
?
b
=-20
,
?
a
=
.
y
-
?
b
.
x
),那么今后為了獲得最大利潤(rùn),該商品的單價(jià)應(yīng)定為
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2在點(diǎn)(3,f(3))處的切線(xiàn)方程為12x+2y-27=0,且對(duì)任意的x∈[0,+∞),f′(x)≤kln(x+1)恒成立.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)F(x)=f′(x)+2ln(x+1)在[0,+∞)上的極值;
(Ⅲ)求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)角α的終邊上有一點(diǎn)P(4,-3),則cos2(
α
2
+
π
4
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|(
1
2
)
x2-5x
<16},B={x|
x-2
x-5
>0},C={x|x2-2mx+m+2=0},
(Ⅰ)求A∩(∁RB);
(Ⅱ)若A∩C=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=A(sinωx+φ)(A>0,ω>0,|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, 
π
2
]
時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為函數(shù)f(x)=Asin(ωx+φ)+C(A>0,ω>0,0<φ<π)圖象的一部分.
(1)求函數(shù)f(x)的周期及單調(diào)區(qū)間.
(2)說(shuō)明函數(shù)f(x)的圖象可以由y=sinx(x∈R)得圖象經(jīng)過(guò)怎樣的變換得到.
(3)求與函數(shù)f(x)圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng)的函數(shù)y=g(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案