4.若曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=2+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),則下列說法正確的是( 。
A.曲線C是直線且過點(diǎn)(-1,2)B.曲線C是直線且斜率為$\frac{{\sqrt{3}}}{3}$
C.曲線C是圓且圓心為(-1,2)D.曲線C是圓且半徑為|t|

分析 曲線C的參數(shù)方程消去參數(shù)t得曲線C的普通方程為$\sqrt{3}x-y+2+\sqrt{3}$=0.把(-1,2)代入,成立,斜率是$\sqrt{3}$.

解答 解:曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=2+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),
消去參數(shù)t得曲線C的普通方程為$\sqrt{3}x-y+2+\sqrt{3}$=0.
把(-1,2)代入,成立,斜率是$\sqrt{3}$.
∴曲線C是直線且過點(diǎn)(-1,2),斜率是$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查曲線形狀的判斷,考查參數(shù)方程、直角坐標(biāo)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=tan($\frac{π}{4}$-x)的定義域是( 。
A.{x|x≠$\frac{π}{4}$}B.{x|x≠$\frac{π}{4}$,k∈Z}C.{x|x≠kπ+$\frac{π}{4}$,k∈Z}D.{x|x≠$\frac{3π}{4}$+kπ,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過點(diǎn)P(4,2)作圓x2+y2+2x-2y+1=0的一條切線,切點(diǎn)為Q,則|PQ|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=|ax-1|(a>1)的圖象為曲線C,O為坐標(biāo)原點(diǎn),若點(diǎn)P為曲線C上任意一點(diǎn),曲線C上存在點(diǎn)Q,使得OP⊥OQ,則實(shí)數(shù)a的取值集合是{e}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若m是正整數(shù)$\int_{-π}^π{{{sin}^2}mxdx}$的值為( 。
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=(x-1)ex
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)a>0時(shí),方程f(x)=a在區(qū)間(1,+∞)上只有一個(gè)解;
(Ⅲ)設(shè)h(x)=f(x)-aln(x-1)-ax,其中a>0.若h(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.動(dòng)點(diǎn)(2-cosθ,cos2θ)的軌跡的普通方程是y=2(x-2)2-1(1≤x≤3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,當(dāng)x∈(0,+∞)時(shí),f(x)=log2x,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ是參數(shù)),則曲線C的形狀是( 。
A.線段B.直線C.射線D.

查看答案和解析>>

同步練習(xí)冊(cè)答案