【題目】已知平面上的動點(diǎn)P(x,y)及兩定點(diǎn)A(﹣2,0),B(2,0),直線PA,PB的斜率分別是 k1 , k2
(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N. ①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足 ,證明直線l過定點(diǎn),并求出這個定點(diǎn).

【答案】
(1)解:由題意得 ,(x≠±2),即x2+4y2=4(x≠±2).

∴動點(diǎn)P的軌跡C的方程是


(2)解:設(shè)點(diǎn)M(x1,y1),N(x2,y2),聯(lián)立 ,化為(1+4k2)x2+8kmx+4m2﹣4=0,

∴△=64k2m2﹣16(m2﹣1)(1+4k2)=16(1+4k2﹣m2)>0.

,

∴y1y2=(kx1+m)(kx2+m)= ,

① 若OM⊥ON,則x1x2+y1y2=0,∴

,化為 ,此時點(diǎn)O到直線l的距離d=

②∵kBMkBN=﹣ ,∴

∴x1x2﹣2(x1+x2)+4+4y1y2=0,

+ ,

代入化為 ,化簡得m(m+2k)=0,解得m=0或m=﹣2k.

當(dāng)m=0時,直線l恒過原點(diǎn);

當(dāng)m=﹣2k時,直線l恒過點(diǎn)(2,0),此時直線l與曲線C最多有一個公共點(diǎn),不符合題意,

綜上可知:直線l恒過定點(diǎn)(0,0)


【解析】(1)利用斜率計算公式即可得出;(2)把直線l的方程與橢圓方程聯(lián)立得到根與系數(shù)的關(guān)系,①利用OM⊥ONx1x2+y1y2=0即可得到k與m的關(guān)系,再利用點(diǎn)到直線的距離公式即可證明; ②利用斜率計算公式和根與系數(shù)的關(guān)系即可得出k與m的關(guān)系,進(jìn)而證明結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點(diǎn).應(yīng)用空間向量方法求解下列問題.

(1)求EF的長
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a、b、c∈R,a>b,則下列不等式成立的是(  )
A.
B.a2>b2
C.a(c2+1)>b(c2+1)
D.a|c|>b|c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關(guān)于t的方程( |t|+m+1=0(t∈R)有實(shí)數(shù)解,則m+n的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2sinx,1), =(cosx,1﹣cos2x),函數(shù)f(x)= (x∈R).
(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場種植黃瓜,根據(jù)多年的市場行情得知,從春節(jié)起的300天內(nèi),黃瓜市場售價與上市時間的關(guān)系用圖1所示的一條折線表示,黃瓜的種植成本與上市時間的關(guān)系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)
(1)寫出圖1表示的市場售價與時間的函數(shù)關(guān)系式P=f(t);寫出圖2表示的種植成本與時間的函數(shù)關(guān)系式Q=g(x);

(2)認(rèn)定市場售價減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各小題中,p是q的充分不必要條件的是( ) ①p:m<﹣2或m>6,q:y=x2+mx+m+3有兩個零點(diǎn);
,q:y=f(x)是偶函數(shù);
③p:cosα=cosβ,q:tanα=tanβ;
④p:A∩B=A,q:(UB)UA)
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是 (t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2+12ρcosθ+11=0. (Ⅰ)說明C是哪種曲線?并將C的方程化為直角坐標(biāo)方程;
(Ⅱ)直線l與C交于A,B兩點(diǎn),|AB|= ,求l的斜率.

查看答案和解析>>

同步練習(xí)冊答案