15.已知圓C:(x-1)2+(y-2)2=25及直線l:(2m+1)x+(m+1)y=7m+4(m∈R),則直線l過的定點及直線與圓相交得的最短弦長分別為(  )
A.(3,1),$4\sqrt{5}$B.(2,1),$4\sqrt{5}$C.(-3,1),$4\sqrt{3}$D.(2,-1),3$\sqrt{3}$

分析 (1)通過直線l轉(zhuǎn)化為直線系,求出直線恒過的定點;
(2)說明直線l被圓C截得的弦長最小時,圓心與定點連線與直線l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦長.

解答 解(1):將直線化為直線束方程:x+y-4+(2x+y-7)=0.
聯(lián)立方程x+y-4=0與2x+y-7=0,得點(3,1);
將點(3,1)代入直線方程,不論m為何值時都滿足方程,所以直線l恒過定點(3,1);
(2)當(dāng)直線l垂直于圓心與定點(3,1)所在直線時弦長最短,
斜率為2,代入方程得m=-$\frac{3}{4}$,此時直線l方程為2x-y-5=0,圓心到直線的距離為$\sqrt{5}$,
所以最短弦長為4$\sqrt{5}$;
故選:A.

點評 本題考查直線系方程的應(yīng)用,考查直線與圓的位置關(guān)系,考查平面幾何知識的運用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=2lnx+ax+\frac{1}{x}({a∈R})$在x=2處的切線經(jīng)過點(-4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式$\frac{2lnx}{{1-{x^2}}}>m-\frac{1}{x}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$tan({θ+\frac{π}{4}})=-3$,則2sin2θ-cos2θ=( 。
A.$-\frac{6}{5}$B.$-\frac{7}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對任意n∈N*成立,且{an+1-an}是等比數(shù)列.
(1)求實數(shù)k的值及數(shù)列{an}的通項公式;
(2)設(shè)bn=log2(an+1),cn=$\frac{1}{_{n}_{n+1}}$,dn=$\frac{_{n+3}}{_{n}_{n+1}({a}_{n+1}+1)}$,記數(shù)列{cn}的前n項和為Pn,數(shù)列{dn}的前n項和為Qn
①若對n∈N*,Pn≤k(n+4)恒成立,求實數(shù)k的取值范圍;
②求證:Qn<Pn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對于函數(shù)f(x)與g(x),若存在λ∈{x∈R|f(x)=0},μ∈{x∈R|g(x)=0},使得|λ-μ|≤1,則稱函數(shù)f(x)與g(x)互為“零點密切函數(shù)”,現(xiàn)已知函數(shù)f(x)=ex-2+x-3與g(x)=x2-ax-x+4互為“零點密切函數(shù)”,則實數(shù)a的取值范圍是[3,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=2x+1的反函數(shù)是( 。
A.y=logx2+1,x>0且x≠1B.y=log2x+1,x>0
C.y=log2x-1,x>0D.y=log2(x-1),x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x2+y2≤1,則|x2+2xy-y2|的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若拋物線y=$\frac{1}{4}$x2上一點P到焦點F的距離為5,則P點的坐標是( 。
A.(4,±4)B.(±4,4)C.(±$\frac{79}{16}$,$\frac{\sqrt{79}}{8}$)D.(±$\frac{\sqrt{79}}{8}$,$\frac{79}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,網(wǎng)格紙的小正方形的邊長是1,粗線畫出的是一個幾何體的三視圖,則這個幾何體的體積為2.

查看答案和解析>>

同步練習(xí)冊答案