3.在△ABC中,a,b,c分別是角A,B,C的對邊,且$\frac{cosB}$=-$\frac{cosC}{2a+c}$.
(1)求角B的大;
(2)若b=$\sqrt{13}$,a+c=4,求△ABC的面積.

分析 (1)由正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用化簡已知可得2sinAcosB+sinA=0,結(jié)合sinA≠0,可得$cosB=-\frac{1}{2}$,結(jié)合范圍0<B<π,即可得解B的值.
(2)由余弦定理可得b2=(a+c)2-2ac-2accosB,由已知可解得ac=3,理由三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(1)在△ABC中,∵$\frac{cosB}=-\frac{cosC}{2a+c}$,由正弦定理得:$\frac{cosB}{sinB}=-\frac{cosC}{2sinA+sinC}$,(2分)
∴2sinAcosB+sinCcosB+cosCsinB=0,
∵A+B+C=π,
∴2sinAcosB+sinA=0,(4分)
∵sinA≠0,
∴$cosB=-\frac{1}{2}$,(5分)
∵0<B<π,
∴$B=\frac{2π}{3}$.                      (6分)
(2)∵將$b=\sqrt{13}$,a+c=4,$B=\frac{2π}{3}$代入b2=a2+c2-2accosB,
即b2=(a+c)2-2ac-2accosB,(8分)
∴$13=16-2ac(1-\frac{1}{2})$,可得ac=3,(10分)
于是,${S_{△ABC}}=\frac{1}{2}acsinB=\frac{3}{4}\sqrt{3}$.  (12分)

點評 本題主要考查了正弦定理,余弦定理,三角形面積公式,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知三棱錐P-ABC的各棱長均相等,O是△ABC的中心,D是PC的中點,則直線PO與直線BD所成角的余弦值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{7}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}滿足:a1=1,(n+1)an+1=an+n,求a2005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知tan($\frac{π}{6}$-α)=$\sqrt{2}$,則tan($\frac{5}{6}$π+α)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算$\frac{3x}{{x}^{2}-2x-3}$-$\frac{1}{x+1}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一圓錐高為h,側(cè)面展開圖為半圓,則圓錐的底面積為$\frac{{h}^{2}}{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將53化為二進制的數(shù),結(jié)果為( 。
A.10101(2)B.101011(2)C.110011(2)D.110101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線y=kx+2是函數(shù)f(x)=x3-x2-3x-1的圖象的一條切線,則k=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一名顧客計劃到某商場購物,他有三張商場的優(yōu)惠劵,商場規(guī)定每購買一件商品只能使用一張優(yōu)惠券.根據(jù)購買商品的標(biāo)價,三張優(yōu)惠券的優(yōu)惠方式不同,具體如下:
優(yōu)惠劵A:若商品標(biāo)價超過50元,則付款時減免標(biāo)價的10%;
優(yōu)惠劵B:若商品標(biāo)價超過100元,則付款時減免20元;
優(yōu)惠劵C:若商品標(biāo)價超過100元,則付款時減免超過100元部分的18%.
某顧客想購買一件標(biāo)價為150元的商品,若想減免錢款最多,則應(yīng)該使用B優(yōu)惠劵(填A(yù),B,C);若顧客想使用優(yōu)惠券C,并希望比優(yōu)惠券A和B減免的錢款都多,則他購買的商品的標(biāo)價應(yīng)高于225元.

查看答案和解析>>

同步練習(xí)冊答案