【題目】已知函數(shù).
(1)若函數(shù)的最小值為0,求的值;
(2)設(shè),求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)與函數(shù)的圖像的一個(gè)公共點(diǎn)為,若過點(diǎn)有且僅有一條公切線,求點(diǎn)的坐標(biāo)及實(shí)數(shù)的值.
【答案】(1);(2)單調(diào)區(qū)間見解析;(3),
【解析】
(1)分類討論參數(shù)的值,利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性,根據(jù)最值求出的值;
(2)函數(shù)整理為,分類討論參數(shù)的值,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性即可;
(3)設(shè)出點(diǎn)P坐標(biāo),求出坐標(biāo)間的關(guān)系得出,構(gòu)造函數(shù),討論函數(shù)的單調(diào)性解方程即可.
(1)首先,因,故,
注意到,故當(dāng)時(shí),,則函數(shù)在單調(diào)遞增,函數(shù)無最小值;
當(dāng)時(shí),若,,若,
所以函數(shù)在單調(diào)遞減,在單調(diào)遞增
故函數(shù)在處取最小值,則,即,故;
(2)因,故
①若,則,函數(shù)在上單調(diào)遞增;
②若
當(dāng),即,也即時(shí)
若時(shí),或
若時(shí),
所以函數(shù)在區(qū)間單調(diào)遞增,在,單調(diào)遞減;
當(dāng),即,也即時(shí)
若時(shí),或
若時(shí),
所以函數(shù)的單調(diào)區(qū)間是,單調(diào)減區(qū)間是和
當(dāng)時(shí),
所以函數(shù)的單調(diào)遞減區(qū)間是
綜上:
當(dāng),函數(shù)的單調(diào)遞區(qū)間是;
當(dāng)時(shí),函數(shù)的單調(diào)區(qū)間是,單調(diào)減區(qū)間是和
當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是和.
(3)設(shè)點(diǎn),
由題意得,即 ,解得
構(gòu)造函數(shù),,
當(dāng)時(shí),;當(dāng)時(shí),
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而
所以方程有唯一解,即
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解社區(qū)群眾體育活動(dòng)的開展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).
(1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);
(2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來自A行政區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻數(shù) | ||||||
支持“生二胎” |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為以歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異;
年齡不低于歲的人數(shù) | 年齡低于歲的人數(shù) | 合計(jì) | |
支持 | |||
不支持 | |||
合計(jì) |
(2)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價(jià)格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com