【題目】在三棱錐中,,,平面平面,點在棱.

的中點,證明:.

與平面所成角的正弦值為,求.

【答案】證明見解析;.

【解析】

的中點,連接.利用勾股定理求證,進而得,最后證出.

為坐標原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標系,設,設平面的法向量為,根據與平面所成角的正弦值為,列式求得,進而求.

解:證明:取的中點,連接,.因為,所以.

又因為平面平面,且相交于,所以平面,

所以.

因為,所以,

所以,所以,

所以,且的中點,所以.

解:如圖,以為坐標原點,的方向為軸正方向,的方向為軸正方向,的方向為軸正方向,建立空間直角坐標系,由已知得,,,

.

設平面的法向量為.

,,得,

可取,

所以

解得(舍去),,則

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是平面的斜線段,A為斜足,點C滿足,且在平面內運動,則有以下幾個命題:

①當時,點C的軌跡是拋物線;

②當時,點C的軌跡是一條直線;

③當時,點C的軌跡是圓;

④當時,點C的軌跡是橢圓;

⑤當時,點C的軌跡是雙曲線.

其中正確的命題是__________.(將所有正確的命題序號填到橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,其中為歐拉數(shù),,為未知實數(shù),且.如果均為函數(shù)的單調區(qū)間.

1)求;

2)若函數(shù)上有極值點,為實數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調的銷售量;

(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數(shù)表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

討論極值點的個數(shù);

有兩個極值點,證明:的極大值大于.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,,.過直線的平面分別交棱E,F兩點.

1)求證:

2)若直線與平面所成角為,且,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】植物園擬建一個多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現(xiàn)有兩種方案:

方案多邊形為直角三角形),如圖1所示,其中;

方案多邊形為等腰梯形),如圖2所示,其中

請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,分別是雙曲線的左,右焦點,過點向一條漸近線作垂線,交雙曲線右支于點,直線軸交于點軸同側),連接,若的內切圓圓心恰好落在以為直徑的圓上,則的大小為________;雙曲線的離心率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為提高市場銷售業(yè)績,促進某產品的銷售,隨機調查了該產品的月銷售單價(單位:元/件)及相應月銷量(單位:萬件),對近5個月的月銷售單價和月銷售量的數(shù)據進行了統(tǒng)計,得到如下表數(shù)據:

月銷售單價(元/件)

9

10

11

月銷售量(萬件)

11

10

8

6

5

(Ⅰ)建立關于的回歸直線方程;

(Ⅱ)該公司開展促銷活動,當該產品月銷售單價為7/件時,其月銷售量達到18萬件,若由回歸直線方程得到的預測數(shù)據與此次促銷活動的實際數(shù)據之差的絕對值不超過萬件,則認為所得到的回歸直線方程是理想的,試問:(Ⅰ)中得到的回歸直線方程是否理想?

(Ⅲ)根據(Ⅰ)的結果,若該產品成本是5/件,月銷售單價為何值時(銷售單價不超過11/件),公司月利潤的預計值最大?

參考公式:回歸直線方程,其中,

參考數(shù)據:,

查看答案和解析>>

同步練習冊答案