18.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{1}{2}$,動(dòng)點(diǎn)C滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,給出以下命題:
①若x+y=1,則點(diǎn)C的軌跡是直線;
②若|x|+|y|=1,則點(diǎn)C的軌跡是矩形;
③若xy=1,則點(diǎn)C的軌跡是拋物線;
④若$\frac{x}{y}$=1,則點(diǎn)C的軌跡是直線;
⑤若x2+y2+xy=1,則點(diǎn)C的軌跡是圓.
以上命題正確的是①②⑤(寫出你認(rèn)為正確的所有命題的序號(hào)).

分析 利用條件,對(duì)四個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:因?yàn)橄蛄?\overrightarrow{OA}$,$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{1}{2}$,
所以∠AOB=60°.
因?yàn)閯?dòng)點(diǎn)C滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,
所以①若x+y=1,則C,A,B共線,所以點(diǎn)C的軌跡是直線AB,正確;
②若|x|+|y|=1,由①,可得點(diǎn)C的軌跡是矩形,正確;
③設(shè)C(m,n),A(a,b),B(c,d),則m=ax+cy,n=bx+dy,xy=1,則點(diǎn)C的軌跡不是拋物線,故不正確;
④若$\frac{x}{y}$=1,即x=y,由①x+y=1,點(diǎn)C的軌跡是直線,故不正確;
⑤$\overrightarrow{OC}$2=(x$\overrightarrow{OA}$+y$\overrightarrow{OB}$)2=x2+y2+xy=1,則點(diǎn)C的軌跡是圓,正確.
故答案為:①②⑤.

點(diǎn)評(píng) 本題考查命題的真假判斷,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)h(x)=xlnx,x∈(0,+∞),g(x)=x3-ax,設(shè)f(x)=h′(x)-x.
(1)求函數(shù)h(x)的單調(diào)區(qū)間與最小值;
(2)若對(duì)于任意x1∈(0,+∞),總存在x2∈[1,2],使得f(x1)≤g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知兩條曲線的參數(shù)方程C1:$\left\{\begin{array}{l}{x=5cosθ}\\{y=5sinθ}\end{array}\right.$(θ為參數(shù)),C2:$\left\{\begin{array}{l}{x=4+tcos\frac{π}{4}}\\{y=3+tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)).
(1)判斷這兩條曲線的形狀;
(2)求這兩條曲線的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知|$\overrightarrow{a}$|=|2$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=1,則向量$\overrightarrow{a}$在$\overrightarrow$的方向上的投影為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.把a(bǔ)n=4n-1中所有能被3或5整除的數(shù)刪去,剩下的數(shù)自小到大排成一個(gè)數(shù)列{bn},則b2013=15091.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,正確的是( 。
A.若|$\overrightarrow{a}$|=0,則$\overrightarrow{a}$=0B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$
C.若$\overrightarrow{a}$與$\overrightarrow$是平行向量,則|$\overrightarrow{a}$|=|$\overrightarrow$|D.若$\overrightarrow{a}$=$\overrightarrow{0}$,則-$\overrightarrow{a}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角∠A、∠B、∠C的對(duì)邊分別為a、b、c,若$\overrightarrow{m}$=(b,$\sqrt{3}$cosB),$\overrightarrow{n}$=(sinA,-a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求∠B的大;
(2)若b=3,sinC=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓O:x2+y2=1為△ABC的外接圓,且tanA=2,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則x+y的最大值為$\frac{5-\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)A和B分別是兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+35}{n+2}$,則使得$\frac{{a}_{n}}{_{n}}$為整數(shù)的正整數(shù)n的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案