17.設(shè)tan(π+α)=2,則$\frac{{sin({α-π})+cos({π-α})}}{{sin({π+α})-cos({π-α})}}$=(  )
A.$\frac{1}{3}$B.1C.3D.-1

分析 由條件利用誘導(dǎo)公式求得tanα的值,再利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,化簡要求的式子,可得結(jié)果.

解答 解:∵tan(π+α)=tanα=2,
則$\frac{{sin({α-π})+cos({π-α})}}{{sin({π+α})-cos({π-α})}}$=$\frac{-sinα-cosα}{-sinα+cosα}$=$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=3,
故選:C.

點(diǎn)評 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.sin10°sin50°sin70°=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過點(diǎn)P(1,1)作直線l交圓x2+y2=4于A,B兩點(diǎn),若$|AB|=2\sqrt{3}$,則直線l的方程為x=1或y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an2=Sn+Sn-1(n≥2),a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(1-an2-a(1-an),若bn+1>bn對任意n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,且F2為拋物線${C_2}:{y^2}=2px$的焦點(diǎn),C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為$2\sqrt{2}$和4.
(1)求C1和C2的方程;
(2)直線l1過F1且與C2不相交,直線l2過F2且與l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x軸上方,求四邊形AF1F2C的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}$•$\overrightarrow{AB}$≥$\overrightarrow{PA}$•$\overrightarrow{PB}$,則λ的最大值是( 。
A.$\frac{{2+\sqrt{2}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是$\frac{9π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3+ax2+1(a∈R),試討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z1=-2-i,z2=i,i是虛數(shù)單位,則復(fù)數(shù)z1-2z2的值是( 。
A.-1+2iB.1-2iC.1+2iD.-2-3i

查看答案和解析>>

同步練習(xí)冊答案