3.根據(jù)如圖的程序框圖回答:如果輸入的S為20,則輸出的i=( 。
A.2B.3C.4D.5

分析 由已知中的程序框圖知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量i的值,模擬程序的運行過程,即可得出答案.

解答 解:當(dāng)S=20時,滿足進行循環(huán)條件,執(zhí)行完循環(huán)體后,S=41,i=2;
當(dāng)S=41時,滿足進行循環(huán)條件,執(zhí)行完循環(huán)體后,S=83,i=3;
當(dāng)S=83時,滿足進行循環(huán)條件,執(zhí)行完循環(huán)體后,S=167,i=4;
當(dāng)S=167時,不滿足進行循環(huán)條件,終止循環(huán),輸出i=4.
故選:C.

點評 本題考查了程序框圖的應(yīng)用問題,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)cos(α+β)sinα-sin(α+β)cosα=$\frac{12}{13}$,且β是第四象限角,則tan$\frac{β}{2}$=( 。
A.±$\frac{2}{3}$B.±$\frac{3}{2}$C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線y=ax+b通過第一、二、四象限,則圓(x+a)2+(y+b)2=1的圓心位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AC邊上中線BE的長等于$\frac{\sqrt{85}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點的圓,射線θ=$\frac{π}{3}$與曲線C2交于點D(4,$\frac{π}{3}$).
(1)求曲線C1的普通方程及C2的直角坐標(biāo)方程;
(2)在極坐標(biāo)系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C1的兩點,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow a$,$\overrightarrow b$是兩個相互垂直的單位向量,而|$\overrightarrow c$|=13,$\overrightarrow c$•$\overrightarrow a$=3,$\overrightarrow c$•$\overrightarrow b$=4,則對于任意實數(shù)t1,t2,則|$\overrightarrow c$-t1$\overrightarrow a-{t_2}$$\overrightarrow b$|的最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,圓C經(jīng)過A(0,1),B(3,4),C(6,1)三點.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i為虛數(shù)單位),則ba=( 。
A.1B.-1C.0D.9

查看答案和解析>>

同步練習(xí)冊答案