13.若復(fù)數(shù)$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i為虛數(shù)單位),則ba=( 。
A.1B.-1C.0D.9

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)$\frac{2+3i}{3-2i}$,再由復(fù)數(shù)相等的充要條件即可求出a,b的值,則答案可求.

解答 解:$\frac{2+3i}{3-2i}$=$\frac{(2+3i)(3+2i)}{(3-2i)(3+2i)}=\frac{13i}{13}=i$,
又$\frac{2+3i}{3-2i}$=a+bi,
∴a=0,b=1.
則ba=10=1.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的充要條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.根據(jù)如圖的程序框圖回答:如果輸入的S為20,則輸出的i=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A是△ABC的內(nèi)角,且sinA+cosA=-$\frac{7}{13}$,求tan($\frac{π}{4}$+A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a>b>c>0,則3a2+$\frac{1}{a(a-b)}$+$\frac{1}{ab}$-6ac+9c2的最小值為( 。
A.2B.4C.2$\sqrt{5}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,點D是邊BC上的一點,∠B=∠DAC=$\frac{π}{3}$,BD=2,AD=2$\sqrt{7}$,則CD的長為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的“S+n”的值為( 。
A.-21B.-20C.-19D.-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù){an}為等差數(shù)列,且a3=5,a5=9,數(shù)列{bn}的前n項和為Sn,且Sn+bn=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若Tn=a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與拋物線C2:y2=$\frac{1}{2}$x在第一象限的交點A的橫坐標為2,直線l:x-2y-$\sqrt{6}$=0過橢圓的一個焦點.
(1)求橢圓C1的方程;
(2)已知直線l'平行于直線l,且與橢圓C1交于不同的兩點M,N,記直線AM的傾斜角θ1,直線AN的傾斜角為θ2,試探究θ12是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,且|F1F2|=2c,若橢圓上存在點P使得|PF1|•|PF2|=2c2,則橢圓的離心率的最小值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案