【題目】已知函數(shù),其中,.

(1)函數(shù)的圖象能否與x軸相切?若能,求出實(shí)數(shù)a;若不能,請說明理由.

(2)處取得極大值,求實(shí)數(shù)a的取值范圍.

【答案】(1) 答案見解析(2)

【解析】

1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及處取得極大值求出a的范圍即可.

(1)函數(shù)的圖象不能與x軸相切,理由若下:

.假設(shè)函數(shù)的圖象與x軸相切于

顯然,,代入中得,無實(shí)數(shù)解.

故函數(shù)的圖象不能與x軸相切.

(2)()

,,

設(shè)(),

恒大于零.

上單調(diào)遞增.

,,,

∴存在唯一,使,且

時(shí),時(shí),

①當(dāng)時(shí),恒成立,單調(diào)遞增,

無極值,不合題意.

②當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.

所以內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

所以處取得極小值,不合題意.

③當(dāng)時(shí),可得當(dāng)時(shí),,當(dāng)時(shí),.

所以內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

所以處取得極大值,符合題意.

此時(shí)由,

綜上可知,實(shí)數(shù)a的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若 處導(dǎo)數(shù)相等,證明:

(2)若對于任意 ,直線 與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值.

(2)若函數(shù)在區(qū)間上有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,拋物線的準(zhǔn)線與橢圓交于兩點(diǎn),過線段上的動點(diǎn)作斜率為正的直線與拋物線相切,且交橢圓于兩點(diǎn).

(Ⅰ)求線段的長及直線斜率的取值范圍;

(Ⅱ)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)討論的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中ab,c成等差數(shù)列且.物理成績統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)

1)根據(jù)頻率分布直方圖,請估計(jì)數(shù)學(xué)成績的平均分;

2)根據(jù)物理成績統(tǒng)計(jì)表,請估計(jì)物理成績的中位數(shù);

3)若數(shù)學(xué)成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,底面為矩形,,,.為棱上一點(diǎn),平面與棱交于點(diǎn).

1)求證:

2)若,試問平面是否可能與平面垂直?若能,求出的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)討論的單調(diào)性;

2)證明:當(dāng)時(shí),.

3)證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊答案