16.在數(shù)列{an}中,a2=$\frac{1}{3}$,(n+2)an+1=nan,則數(shù)列{an}的前n項的和Sn等于$\frac{2n}{n+1}$.

分析 通過對(n+2)an+1=nan變形可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+2}$,進而$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{3}$、$\frac{{a}_{3}}{{a}_{2}}$=$\frac{2}{4}$、…、$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,累乘即得通項an=2($\frac{1}{n}$-$\frac{1}{n+1}$),累加即得結(jié)論.

解答 解:∵(n+2)an+1=nan,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+2}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{3}$,
$\frac{{a}_{3}}{{a}_{2}}$=$\frac{2}{4}$,

$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1•2•…•(n-1)}{3•4•…•(n+1)}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
又∵a2=$\frac{1}{3}$,
∴a1=3a2=3•$\frac{1}{3}$=1,
∴an=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$,
故答案為:$\frac{2n}{n+1}$.

點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若數(shù)列{an}中,a1=3,an+an-1=4(n≥2),則a2015的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.${∫}_{1}^{2}$x2dx=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{1}{x+b}$(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)過曲線y=f(x)上任意一點作切線l,問l與直線x=1和直線y=x所圍成的三角形的面積是否為定值,若為定值,求出此定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若等比數(shù)列{an}滿足log3a1+log3a2+…+log3a10=10,則a2a9+a4a7的值為( 。
A.9B.18C.27D.2+log35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知內(nèi)角A,B,C的對邊分別為a,b,c,且cosA=$\frac{b+2asinB-2acosC}{2c}$.
(1)求角A;
(2)若△ABC的面積為$\frac{1}{2}$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{2-{x}^{2}},-\sqrt{2}≤x≤1}\\{\frac{1}{x},1<x≤e}\end{array}\right.$,則${∫}_{-\sqrt{2}}^{e}$f(x)dx等于( 。
A.$\frac{3π+6}{4}$B.$\frac{3π+4}{4}$C.π+1D.$\frac{3π+3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓的半徑為6cm,則圓心角為15°的圓弧與半徑圍成的扇形的面積為$\frac{3π}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)計一個算法,求實數(shù)x的絕對值,并畫出程序框圖.

查看答案和解析>>

同步練習(xí)冊答案