3.已知點(diǎn)A($\frac{3}{2}$,-1)在拋物線C:x2=2py(p>0)的準(zhǔn)線l1上,過點(diǎn)A作一條斜率為2的直線l2,點(diǎn)P是拋物線
上的動點(diǎn),則點(diǎn)P到直線l1和到直線l2的距離之和的最小值是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.2D.$2\sqrt{2}$

分析 點(diǎn)F作直線l2的垂線FH,垂足為H,則線段FH與拋物線C的交點(diǎn)為所求的點(diǎn)P.由拋物線的定義可得,|PF|為點(diǎn)P到直線的l1距離,又|PH|為點(diǎn)P到直線l2的距離,所以點(diǎn)P到直線l1和到直線l2的距離之和的最小值是F到直線l2的距離.

解答 解:由題意,拋物線的焦點(diǎn)為F(0,1),則直線l2的方程為2x-y-4=0,
過點(diǎn)F作直線l2的垂線FH,垂足為H,則線段FH與拋物線C的交點(diǎn)為所求的點(diǎn)P.
由拋物線的定義可得,|PF|為點(diǎn)P到直線的l1距離,
又|PH|為點(diǎn)P到直線l2的距離,
所以點(diǎn)P到直線l1和到直線l2的距離之和的最小值是F到直線l2的距離d=$\frac{|0-1-4|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\sqrt{5}$,
所以點(diǎn)P到直線l1和到直線l2的距離之和的最小值是$\sqrt{5}$.
故選:B.

點(diǎn)評 此題考查學(xué)生靈活運(yùn)用拋物線的簡單性質(zhì)解決實(shí)際問題,靈活運(yùn)用點(diǎn)到直線的距離公式化簡求值,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知變量x,y滿足約數(shù)條件$\left\{\begin{array}{l}{y≥2x-2}\\{y>-x-1}\\{y≤\sqrt{1-{x}^{2}}}\end{array}\right.$,則z=x-y的最小值為-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求證:PC⊥平面ABC;
(Ⅱ)求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.甲、乙兩名同學(xué)8次數(shù)學(xué)測驗(yàn)成績?nèi)缜o葉圖所示,$\overline{x}$1,$\overline{x}$2分別表示甲、乙兩名同學(xué)8次數(shù)學(xué)測驗(yàn)成績的平均數(shù),s1,s2分別表示甲、乙兩名同學(xué)8次數(shù)學(xué)測驗(yàn)成績的標(biāo)準(zhǔn)差,則有( 。
A.$\overline{x}$1>$\overline{x}$2,s1<s2B.$\overline{x}$1=$\overline{x}$2,s1<s2C.$\overline{x}$1=$\overline{x}$2,s1=s2D.$\overline{x}$1<$\overline{x}$2,s1>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=2|$\overrightarrow{a}$|,則向量$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$的夾角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖1,直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=2AB=4,BC=2.AE∥BC交CD于點(diǎn)E,點(diǎn)G,H分別在線段DA,DE上,且GH∥AE.將圖1中的△AED沿AE翻折,使平面ADE⊥平面ABCE(如圖2所示),連結(jié)BD、CD,AC、BE.

(Ⅰ)求證:平面DAC⊥平面DEB;
(Ⅱ)當(dāng)三棱錐B-GHE的體積最大時(shí),求直線BG與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.各項(xiàng)為正的數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_{n+1}}=\frac{a_n^2}{λ}+{a_n},(n∈{N^*})$,
(1)取λ=an+1,求證:數(shù)列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是等比數(shù)列,并求其公比;
(2)取λ=2時(shí)令${b_n}=\frac{1}{{{a_n}+2}}$,記數(shù)列{bn}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)之積為Tn,求證:對任意正整數(shù)n,2n+1Tn+Sn為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如圖直方圖:
(Ⅰ)若直方圖中前三組的頻數(shù)成等比數(shù)列,后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級視力在5.0以下的人數(shù);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
是否近視
年級名次
1~50951~1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(Ⅲ)在(Ⅱ)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡:$\frac{sin(α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)co{s}^{2}(π-α)}$.

查看答案和解析>>

同步練習(xí)冊答案