若冪函數(shù)y=(m2-m-1)x2-3m的圖象不經(jīng)過(guò)原點(diǎn),則m的值為
 
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由冪函數(shù)y=(m2-m-1)x2-3m的圖象不經(jīng)過(guò)原點(diǎn)可得m2-m-1=1,2-3m<0;從而解得.
解答: 解:∵冪函數(shù)y=(m2-m-1)x2-3m的圖象不經(jīng)過(guò)原點(diǎn),
∴m2-m-1=1,2-3m<0;
解得,m=2;
故答案為:2.
點(diǎn)評(píng):本題考查了冪函數(shù)的定義及性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等差數(shù)列滿足a12+a102=10,則S=a10+a11+…+a19最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為4的球面上有四點(diǎn),S、A、B、C,且△ABC是等邊三角形,球心O到平面ABC的距離為2,面SAB⊥面ABC,則棱錐S-ABC體積的最大值為( 。
A、9
39
+18
3
B、3
39
+6
3
C、3
39
+8
3
D、9
39
+6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從空間一點(diǎn)P向二面角α-1-β的兩個(gè)平面作垂線PE,PF,E,F(xiàn)為垂足,若∠EPF=60°,則二面角的平面角的大小為( 。
A、60°B、120°
C、60°或120°D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(π)0+(2
7
9
0.5+0.1-2+(2
10
27
 -
2
3
+
37
48

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4正三角形,AA1⊥平面ABC,AA1=2
6
,M為A1B1的中點(diǎn).
(Ⅰ)求證:MC⊥AB;
(文科)(Ⅱ)求三棱錐A1-ABP的體積.
(理科)(Ⅱ)若點(diǎn)P為CC1的中點(diǎn),求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x2,a∈R,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時(shí),f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)a>0,若A(x1,y1),B(x2,y2)為曲線y=f(x)上的兩個(gè)不同點(diǎn),滿足0<x1<x2,且?x3
(x1,x2),使得曲線y=f(x)在x=x3處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:3
A
3
x
=2
A
2
x+1
+6
A
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為平行四邊形ABCD所在平面外一點(diǎn),E∈PB,F(xiàn)∈AC,且
PE
EB
=
CF
FA
,求證:EF∥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案