1.計(jì)算 ($\frac{1}{8}$)${\;}^{-\frac{2}{3}}$-π0+lg100 的結(jié)果是5.

分析 利用有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則求解.

解答 解:($\frac{1}{8}$)${\;}^{-\frac{2}{3}}$-π0+lg100
=4-1+2
=5.
故答案為:5.

點(diǎn)評(píng) 本題考查有理數(shù)指數(shù)冪化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若sinx-cosx=$\frac{1}{5}$,x∈(0,π),則tanx=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.命題p:?a∈(-∞,-$\frac{1}{4}$),使得函數(shù)f(x)=|x+$\frac{a}{x+1}$|在[$\frac{1}{2}$,3]上單調(diào)遞增,命題q:g(x)=x+log2x在區(qū)間($\frac{1}{2}$,+∞)上無(wú)零點(diǎn),則下列命題中正確的是( 。
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.F為拋物線(xiàn)y2=12x的焦點(diǎn),過(guò)F的直線(xiàn)l與拋物線(xiàn)在第一象限的交點(diǎn)為A,過(guò)A作AH垂直拋物線(xiàn)的準(zhǔn)線(xiàn)于H,若直線(xiàn)l的傾角α∈(0,$\frac{π}{3}$],則△AFH面積的最小值為36$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=x3+x-8的零點(diǎn)所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=ax+ta-x(a>0,且a≠1)是定義在R上的偶函數(shù).
(Ⅰ)求實(shí)數(shù)t的值;
(Ⅱ)解關(guān)于x的不等式f(x)>a2x-3+a-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,已知a=$\sqrt{2}$,B=60°,A=45°,則b等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.樣本數(shù)據(jù):-2,-1,0,1,2的方差為(  )
A.$\sqrt{2}$B.2C.1D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,若以點(diǎn)F為圓心,半徑為a的圓與雙曲線(xiàn)C的漸近線(xiàn)相切,則雙曲線(xiàn)C的離心率等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案