【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸正半軸為極軸)中,圓的方程為

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求.

【答案】解:()由

)將的參數(shù)方程代入圓C的直角坐標(biāo)方程,得,

由于,故可設(shè)是上述方程的兩實(shí)根,

所以故由上式及t的幾何意義得:

|PA|+|PB|==

【解析】

試題分析:(1)利用極坐標(biāo)方程和直角坐標(biāo)方程的互化公式即可求解;(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,得到關(guān)于的一元二次方程,利用的幾何意義和根與系數(shù)的關(guān)系進(jìn)行求解.

試題解析:(1),

.

(2)將直線的參數(shù)方程代入圓C的直角坐標(biāo)方程,得,

由于,故可設(shè)是上述方程的兩實(shí)根,

所以,又直線過(guò)點(diǎn),故由上式及t的幾何意義得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ﹣lnx.
(1)若f(x)在x=3處取得極值,求實(shí)數(shù)a的值;
(2)若f(x)≥5﹣3x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上的三點(diǎn) 、 .

(1)求以 為焦點(diǎn)且過(guò)點(diǎn) 的橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn) 、 關(guān)于直線 的對(duì)稱點(diǎn)分別為 、 、 求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有以下四個(gè)命題,其中正確的是( )

A. 由獨(dú)立性檢驗(yàn)可知,有的把握認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān),若某人數(shù)學(xué)成績(jī)優(yōu)秀,則他有的可能物理成績(jī)優(yōu)秀;

B. 兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于

C. 在線性回歸方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量平均增加個(gè)單位

D. 線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: 的離心率 ,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個(gè),生產(chǎn)一個(gè)衛(wèi)兵需分鐘,生產(chǎn)一個(gè)騎兵需分鐘,生產(chǎn)一個(gè)傘兵需分鐘,已知總生產(chǎn)時(shí)間不超過(guò)小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);

(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)選修4﹣2:矩陣與變換
設(shè)曲線2x2+2xy+y2=1在矩陣A= (a>0)對(duì)應(yīng)的變換作用下得到的曲線為x2+y2=1.
(Ⅰ)求實(shí)數(shù)a,b的值.
(Ⅱ)求A2的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),的圖象在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)若函數(shù),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則不等式f(x)≥x2的解集是(
A.[﹣1,1]
B.[﹣2,2]
C.[﹣2,1]
D.[﹣1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案