四邊形ABCD中,
AB
=2
DC
,則四邊形ABCD為
 
 (填“梯形、矩形、菱形、平行四邊形”之一)
考點:平行向量與共線向量
專題:常規(guī)題型
分析:根據(jù)
AB
=2
DC
,以及共線向量定理可得AB∥CD,得,|AB|=2|CD|,故四邊形ABCD為 梯形.
解答: 解:由
AB
=2
DC
,得AB∥CD,|AB|=2|CD|,
故四邊形ABCD為 梯形.
故答案為:梯形.
點評:此題是個基礎(chǔ)題.考查共線向量定理以及向量在幾何中的應(yīng)用,考查學(xué)生利用知識分析解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1上的點P到點(-5,0)的距離為6,則P到(5,0)距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的M、P表示同一集合的是
 
(填序號).
①M={3,-1},P={(3,-1)};
②M={(3,1)},P={(1,3)};
③M={y|y=x2-1,x∈R},P={a|a=x2-1,x∈R};
④M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-2x+5,x∈[-1,2]的值域是
 
.(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足:a1+3a2+5a3+…+(2n-1)•an=(n-1)•3n+1+3(n∈N*),則數(shù)列{an}的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離相等,燈塔A在觀察站C的北偏東40°,燈塔B在觀察站C的南偏東60°,則燈塔A在燈塔B的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3
3
+
mx2+(m+n)x+1
2
的兩個極值點分別為x1,x2,且x1∈(0,1),x2∈(1,+∞);點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍是(  )
A、(1,3]
B、(1,3)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(x+
π
6
)(x∈R)圖象上所有的點向左平行移動
π
6
個單位長度,再把圖象上各點的橫坐標(biāo)擴大到原來的2倍(縱坐標(biāo)不變),則所得到的圖象的解析式為(  )
A、y=sin(2x+
π
3
B、y=sin(
x
2
+
π
3
C、y=sin
x
2
D、y=cos
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(m,0)(其中m>a)的直線?與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于P、Q兩點,線段PQ的中點為N,設(shè)直線?的斜率為k1,直線ON(O為坐標(biāo)原點)的斜率為k2(k1•k2≠0),若|k1|+|k2|的最小值為
3
,則橢圓的離心率為(  )
A、
1
2
B、
3
2
C、
1
3
D、
2
2

查看答案和解析>>

同步練習(xí)冊答案