14.若二進(jìn)制數(shù)100y011和八進(jìn)制數(shù)x03相等,求x+y的值.

分析 直接利用進(jìn)位制運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:100y011=1×26+y×23+1×2+1=67+8y,
x03=x×82+3=64x+3,
∴67+8y=64x+3,
∵y=0或1,x可以取1、2、3、4、5、6、7,
y=0時(shí),x=1;y=1時(shí),64x=72,無(wú)解;
∴x+y=1.

點(diǎn)評(píng) 本題考查進(jìn)位制的應(yīng)用,函數(shù)與方程思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,圓x2+y2=4上的一點(diǎn)P(x0,y0)(x0,y0>0)處的切線l分別交x軸,y軸于點(diǎn)A,B,以A,B為頂點(diǎn)且以O(shè)為中心的橢圓記作C,直線OP交C于M,N兩點(diǎn).
(1)若橢圓C的離心率為$\frac{{\sqrt{6}}}{3}$,求P點(diǎn)的坐標(biāo)
(2)證明四邊形AMBN的面積S>8$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上增函數(shù),則稱f(x)為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為A,所有“二階比增函數(shù)”組成的集合記為B.
(1)設(shè)函數(shù)f(x)=ax3-2(a-2)x2+(a-1)x(x>0,a∈R)
①求證:當(dāng)a=0時(shí),f(x)∈A∩B;
②若f(x)∈A,且f(x)∉B,求實(shí)數(shù)a的取值范圍.
(2)對(duì)定義在(0,+∞)上的函數(shù)f(x),若f(x)∈B,且存在常數(shù)k使得?x∈(0,+∞),f(x)<k,求證:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.把“二進(jìn)制”數(shù)1011001(2)化為“六進(jìn)制”數(shù)是225(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.P為雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線位于第一象限上的一點(diǎn),若點(diǎn)P到該雙曲線左焦點(diǎn)的距離為2$\sqrt{3}$,則點(diǎn)P到其右焦點(diǎn)的距離為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.現(xiàn)有A,B兩個(gè)箱子,A箱裝有紅球和白球共6個(gè),B箱裝有紅球4個(gè),白球1個(gè)、黃球1個(gè),現(xiàn)甲從A箱中任取2個(gè)球,乙從B箱中任取1個(gè)球,若取出的3個(gè)球恰有兩球顏色相同,則甲獲勝,否則乙獲勝,為了保證公平性,A箱中的紅球個(gè)數(shù)應(yīng)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某校老年、中年和青年教師的人數(shù)分別為900、1800、1600,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有240人,則該樣本的老年教師人數(shù)為135.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,直線e、f為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線,F(xiàn)為右焦點(diǎn),過(guò)點(diǎn)F作FM∥f,交e于M,交雙曲線于R,且$\frac{FR}{FM}$∈[$\frac{1}{2}$,$\frac{2}{3}$],則雙曲線的離心率的取值范圍是[$\sqrt{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知A,B為銳角三角形的兩個(gè)內(nèi)角,對(duì)于函數(shù):f(x)=($\frac{sinA}{cosB}$)|x|+($\frac{sinB}{cosA}$)|x|,下列說(shuō)法正確的是( 。
A.f(x)在(-∞,0]上單調(diào)遞減,在(0,+∞)上單調(diào)遞增
B.f(x)在(-∞,0]上單調(diào)遞增,在(0,+∞)上單調(diào)遞減
C.f(x)在定義域上單調(diào)遞增
D.f(x)在定義域上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案