2.把“二進(jìn)制”數(shù)1011001(2)化為“六進(jìn)制”數(shù)是225(6)

分析 先將“二進(jìn)制”數(shù)化為十進(jìn)制數(shù),然后將十進(jìn)制的89化為六進(jìn)制,即可得到結(jié)論.

解答 解:先將“二進(jìn)制”數(shù)1011001(2)化為十進(jìn)制數(shù)為26+24+23+20=89(10)
然后將十進(jìn)制的89化為六進(jìn)制:
89÷6=14余5,14÷6=2余2,2÷6=0余2
所以,結(jié)果是225(6)
故答案為:225(6)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二進(jìn)制、十進(jìn)制與六進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.圖是一個(gè)商場(chǎng)某段時(shí)間制定銷售計(jì)劃時(shí)的局部結(jié)構(gòu)圖,從圖中可以看出“計(jì)劃”的制定主要受( 。﹤(gè)因素的影響.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知拋物線C:y2=4x,圓F:(x-1)2+y2=1,過(guò)點(diǎn)(1,0)的直線l與拋物線C及圓F交于四點(diǎn),從上到下依次為A、B、C、D,若|AB|=3,則|CD|=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校為了解一段時(shí)間內(nèi)學(xué)生“學(xué)習(xí)習(xí)慣養(yǎng)成教育”情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,用“十分制”記錄他們的測(cè)試成績(jī),若所得分?jǐn)?shù)不低于8分,則稱該學(xué)生“學(xué)習(xí)習(xí)慣良好”,學(xué)生得分情況統(tǒng)計(jì)如表:
 分?jǐn)?shù)[6.0,7.0)[7.0,8.0)[8.0,9.0)[9.0,10.0]
 頻數(shù) 1015  5025 
(1)請(qǐng)?jiān)诖痤}卡上完成學(xué)生得分的頻率分布直方圖,并估計(jì)學(xué)生得分的平均分$\overline{x}$(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)若用樣本去估計(jì)總體的分布,請(qǐng)對(duì)本次“學(xué)習(xí)習(xí)慣養(yǎng)成教育活動(dòng)”作出評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=x2sinx,則$f'(\frac{π}{2})$=(  )
A.$\frac{π^2}{2}$B.$-\frac{π^2}{2}$C.$-\frac{π^2}{4}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知${\overrightarrow e_1}$和${\overrightarrow e_2}$是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是( 。
A.${\overrightarrow e_1}$和 ${\overrightarrow e_1}$+${\overrightarrow e_2}$B.${\overrightarrow e_1}$-2${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$
C.${\overrightarrow e_1}$+${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$D.2${\overrightarrow e_1}$-${\overrightarrow e_2}$和$\frac{1}{2}$${\overrightarrow e_2}$-${\overrightarrow e_1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若二進(jìn)制數(shù)100y011和八進(jìn)制數(shù)x03相等,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知雙曲線C過(guò)點(diǎn)A(-$\sqrt{15}$,1),且與x2-3y2=1有相同的漸近線.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過(guò)雙曲線C的一個(gè)焦點(diǎn)作傾斜角為45°的直線l與雙曲線交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知c>0且c≠1,設(shè)命題p:“函數(shù)y=(2c-1)•cx在R上為減函數(shù)”,命題q:“不等式x+(x-2c)2≤1的解集為∅”,若“p∧q”為真命題,求實(shí)數(shù)c的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案