13.已知loga$\frac{4}{3}$>1,則a的取值范圍是( 。
A.0<a<1B.a>1C.1<a<$\frac{4}{3}$D.a>$\frac{4}{3}$

分析 由loga$\frac{4}{3}$>0可知a>1,然后利用對數(shù)函數(shù)的單調(diào)性求得a的范圍.

解答 解:由loga$\frac{4}{3}$>1>0,得a>1.
又loga$\frac{4}{3}$>1=logaa,得1$<a<\frac{4}{3}$.
故選:C.

點評 本題考查對數(shù)不等式的解法,考查對數(shù)函數(shù)的單調(diào)性,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.不等式x2+x-2>0的解集為( 。
A.{x|x<-2或x>1}B.{x|-2<x<1}C.{x|x<-1或x>2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)y=x2+2mx+m在[0,1]上不單調(diào),則f(m)的最小值為-$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.方程組:$\left\{\begin{array}{l}{y=mx+1}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$有解,m的取值范圍是-2≤m≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,三個內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,lgc-lga=-lgsinB=lg$\sqrt{2}$,且∠B為銳角,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知:集合A={x|x2+mx+n=0},B={x|x2+3mx+2n=0},且A∩B={-1},求A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.對任意正整數(shù)n,數(shù)列{an}滿足$\sum_{i=1}^{n}$ai=n3,則$\sum_{i=2}^{2009}$$\frac{1}{{a}_{i}-1}$=$\frac{2008}{6027}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等比數(shù)列{an}的公比q=2,它的前9項的平均值等于$\frac{511}{3}$,若從中去掉一項am,剩下的8項的平均值等于$\frac{1437}{8}$,則m等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)f(x)=x3-3x2+1的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案