分析 (1)令n=1可得a1=a2-1;再將n換為n-1,相減可得an=na2n-2(a2-1),進(jìn)而得到所求通項(xiàng)公式;
(2)運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,可得Sn=na2n-$\frac{1-{a}^{2n}}{1-{a}^{2}}$,再對(duì)a討論,a>1,0<a<1,化簡整理,由重要數(shù)列的極限公式,計(jì)算即可得到所求值.
解答 解:(1)a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=a2n-1,
可得n=1時(shí),a1=a2-1;
當(dāng)n>1時(shí),a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=a2n-1,
可得a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n-1}}{n-1}$=a2n-2-1,
兩式相減可得,$\frac{{a}_{n}}{n}$=a2n-1-a2n-2+1=a2n-2(a2-1),
即有an=na2n-2(a2-1),
上式對(duì)n=1也成立.
故an=na2n-2(a2-1),n∈N*;
(2)Sn=(a2-1)(1•a0+2•a2+3•a4+…+na2n-2),
a2Sn=(a2-1)(1•a2+2•a4+3•a6+…+na2n),
兩式相減可得,(1-a2)Sn=(a2-1)(1+a2+a4+…+a2n-2-na2n)
=(a2-1)($\frac{1-{a}^{2n}}{1-{a}^{2}}$-na2n)
可得Sn=na2n-$\frac{1-{a}^{2n}}{1-{a}^{2}}$,
即有$\underset{lim}{n→∞}$$\frac{{S}_{n}}{({a}^{2n}-1)n}$=$\underset{lim}{n→∞}$[$\frac{{a}^{2n}}{{a}^{2n}-1}$+$\frac{1}{n(1-{a}^{2})}$]
=$\underset{lim}{n→∞}$$\frac{{a}^{2n}}{{a}^{2n}-1}$+$\underset{lim}{n→∞}$$\frac{1}{n(1-{a}^{2})}$
當(dāng)a>1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{({a}^{2n}-1)n}$=$\underset{lim}{n→∞}$$\frac{1}{1-\frac{1}{{a}^{2n}}}$+0=1+0=1;
當(dāng)0<a<1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{({a}^{2n}-1)n}$=$\frac{\underset{lim}{n→∞}{a}^{2n}}{\underset{lim}{n→∞}({a}^{2n}-1)}$+$\underset{lim}{n→∞}$$\frac{1}{n(1-{a}^{2})}$
=0+0=0.
綜上可得,a>1時(shí),極限為1;0<a<1時(shí),極限為0.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用下標(biāo)變換相減法,考查數(shù)列的求和方法:錯(cuò)位相減法,以及數(shù)列極限的求法,注意運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com