18.已知集合M={x|-2<x<1},N={x|1<2x<4},則M∪N=( 。
A.{x|0<x<1}B.{x|-2<x<0}C.{x|1<x<4}D.{x|-2<x<2}

分析 求出集合N,然后求解并集即可.

解答 解:集合M={x|-2<x<1},N={x|1<2x<4}={x|0<x<2},
則M∪N={x|-2<x<2}.
故選:D.

點評 本題考查集合的并集的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1、F2,已知線段F1F2被點(b,0)分成3:1的兩段,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y>0,且x+2y=1,則(x+$\frac{1}{x}$)(y+$\frac{1}{4y}$)的最小值是(  )
A.$\frac{25}{2}$B.$\frac{25}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設△ABC的∠A,∠B,∠C的對邊分別為a,b,c,△ABC的面積S=$\frac{1}{4}$(3b2+7c2-2a2),則cos∠A=[-$\frac{1+\sqrt{5}}{2}$,$\frac{1-\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知實數(shù)x,y滿足ln(2x+2y)=0,則x+y的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足a1•a6=21,a2+a5=22.
(Ⅰ)若數(shù)列{bn}滿足b1+4b2+9b3+…+n2bn=$\frac{1}{4}$an,求數(shù)列{bn}的通項公式;
(Ⅱ)證明:對一切正整數(shù)n,有b1+b2+…bn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知過拋物線y2=2px(p>0)的焦點F作一條直線交拋物線于A、B兩點,以線段AB為直徑的圓與直線x=-1相切,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知點A(cos77°,sin77°),B(cos17°,sin17°),則直線AB的斜率為( 。
A.tan47°B.tan43°C.-tan47°D.-tan43°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{3}{2}\;x+3\;\;(-2≤x<0)\\-\frac{1}{2}x+3\;\;\;\;(0≤x<2)\\ 2\;\;\;\;(2≤x<4)\end{array}\right.$
①畫出函數(shù)的圖象;
②利用函數(shù)的圖象寫出函數(shù)的值域
(2)已知函數(shù)$y=\sqrt{ax+1}(a<0,且$且a為常數(shù))在區(qū)間(-∞,1]上有意義,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案