分析 取AB中點E,連接SE、CE,由等腰三角形三線合一,可得SE⊥AB、BE⊥CE,進而由線面垂直的判定定理得到AB⊥平面SCE,最后由線面垂直的性質(zhì)得到AB⊥SC,進而可得角為$\frac{π}{2}$.
解答 解:取AB中點E,連接SE、CE,
∵SA=SB,
∴SE⊥AB,
同理可得BE⊥CE,
∵SE∩CE=E,SE、CE?平面SCE,
∴AB⊥平面SCE,
∵SC?平面SCE,
∴AB⊥SC,
∴直線CS與AB所成角為$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.
點評 本題考查空間異面直線及其所成的角,解答的關鍵是熟練掌握空間線線垂直與線面垂直之間的相互轉化,注意解題方法的積累,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com