20.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an+1=2Sn(n∈N*),a1=2,則數(shù)列{an}通項(xiàng)公式an=${a_n}=\left\{{\begin{array}{l}2\\{4×{3^{n-2}}}\end{array}}\right.\begin{array}{l}{n=1}\\{n≥2}\end{array}$.

分析 當(dāng)n≥2根據(jù)題設(shè)條件可知an=2Sn-1,兩式相減整理得an+1=3an,判斷出此時(shí)數(shù)列{an}為等比數(shù)列,a2=2a1=4,公比為3,求得n≥2時(shí)的通項(xiàng)公式,最后綜合可得答案.

解答 解:當(dāng)n≥2時(shí),an=2Sn-1,
∴an+1-an=2Sn-2Sn-1=2an
即an+1=3an,
∴數(shù)列{an}為等比數(shù)列,a2=2a1=4,公比為3,
∴an=4•3n-2,
當(dāng)n=1時(shí),a1=2,
∴數(shù)列{an}的通項(xiàng)公式為:${a_n}=\left\{{\begin{array}{l}2\\{4×{3^{n-2}}}\end{array}}\right.\begin{array}{l}{n=1}\\{n≥2}\end{array}$.
故答案為:${a_n}=\left\{{\begin{array}{l}2\\{4×{3^{n-2}}}\end{array}}\right.\begin{array}{l}{n=1}\\{n≥2}\end{array}$.

點(diǎn)評(píng) 本題主要考查了數(shù)列的遞推式求數(shù)列通項(xiàng)公式.解題的最后一定要驗(yàn)證a1.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=-x2-3x,則f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知一圓的圓心坐標(biāo)為C(2,-1),且被直線l:x-y-1=0截得的弦長為2$\sqrt{2}$,則此圓的方程(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=3Sn(n≥1,n∈N*)第k項(xiàng)滿足750<ak<900,則k等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解關(guān)于x的不等式ax2+(a-1)x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求:(1)y=ex在點(diǎn)A(0,1)處的切線方程;
(2)y=lnx在點(diǎn)A(1,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人.

(1)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分比)的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm<170cm總計(jì)
男生身高
女生身高
總計(jì)
(2)在上述80名學(xué)生中,從身高在170-175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.
參考公式及參考數(shù)據(jù)如下:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0250.6100.0050.001
k05.0244.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某工廠生產(chǎn)的某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),年生產(chǎn)總成本y(萬元)與年產(chǎn)量x(噸)之間的關(guān)系可近似地表示成y=$\frac{x^2}{10}-30x+4000$,問年產(chǎn)量為多少時(shí),每噸的平均成本最低?并求出該最低成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2015>0,S2016<0.則數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}的最大的項(xiàng)的n的值為( 。
A.1007B.1008C.1009D.1010

查看答案和解析>>

同步練習(xí)冊(cè)答案