分析 (Ⅰ)由題意可得 an≠0,化簡條件可得$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=c,可得{$\frac{1}{{a}_{n}}$}為等差數(shù)列,由等差數(shù)列的定義求出{$\frac{1}{{a}_{n}}$}的通項公式,由 a22=a1a5 解得c的值;
(Ⅱ)先求出{bn}的通項公式為bn=$\frac{1}{(2n-3)(2n+1)}$(n≥2),用裂項法求出{bn}的前n項和sn.
解答 解:(Ⅰ)證明:由題意可得 an≠0.否則,若存在an=0(n>1).
由遞增式必有an-1=0,從而導(dǎo)致a1=0,這與a1=1矛盾.
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=c,故{$\frac{1}{{a}_{n}}$}是以c為公差,$\frac{1}{{a}_{1}}$=1為首項的等差數(shù)列.
故$\frac{1}{{a}_{n}}$=1+(n-1)c,∴an=$\frac{1}{1+(n-1)c}$.
從而a2=$\frac{1}{1+c}$,a5=$\frac{1}{1+4c}$,
由 a22=a1a5 解得c=2或c=0.
當c=0時,a1=a2=a5,舍去.故取c=2.
(Ⅱ)an=$\frac{1}{2n-1}$,故對{bn}:b1=$\frac{2}{3}$,
bn=$\frac{1}{(2n-3)(2n+1)}$(n≥2),
Sn=b1+b2+b3+…+bn,
當n≥2時,Sn=$\frac{2}{3}$+$\frac{1}{4}$[(1-$\frac{1}{5}$)+($\frac{1}{3}$-$\frac{1}{7}$)+($\frac{1}{5}$-$\frac{1}{9}$)
+($\frac{1}{7}$-$\frac{1}{11}$)+…+($\frac{1}{2n-5}$-$\frac{1}{2n-1}$)+($\frac{1}{2n-3}$-$\frac{1}{2n+1}$)
=$\frac{2}{3}$+$\frac{1}{4}$(1+$\frac{1}{3}$-$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=1-$\frac{1}{4}$($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)
=1-$\frac{n}{4{n}^{2}-1}$.
當n=1時,$1-\frac{n}{{4{n^2}-1}}=\frac{2}{3}$,
所以${S_n}=1-\frac{n}{{4{n^2}-1}}(n∈{N^*})$.
點評 本題主要考查等差數(shù)列、等比數(shù)列的定義和性質(zhì),求等差數(shù)列的通項公式,用裂項法對數(shù)列進行求和,求出Sn的值,是解題的難點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x3 | B. | f(x)=x2 | C. | f(x)=4x-x2 | D. | f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x1)<0,f(x2)>0 | B. | g(x1)>0,f(x2)<0 | C. | g(x1)>0,f(x2)>0 | D. | g(x1)<0,f(x2)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$-1 | B. | 2$\sqrt{2}$+1 | C. | 2$\sqrt{2}$-2 | D. | 2$\sqrt{2}$-$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=-1 | B. | m=-2 | C. | m=-1或2 | D. | m=l或m=-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com