1.設(shè)函數(shù)f(x)=ex+x-2的零點(diǎn)為x1,函數(shù)g(x)=lnx+x2-3的零點(diǎn)為x2,則(  )
A.g(x1)<0,f(x2)>0B.g(x1)>0,f(x2)<0C.g(x1)>0,f(x2)>0D.g(x1)<0,f(x2)<0

分析 由零點(diǎn)存在性定理知x1∈(0,1);x2∈(1,2),再利用單調(diào)性,即可得出結(jié)論.

解答 解:因?yàn)楹瘮?shù)f(x)=ex+x-2在R上單調(diào)遞增,且f(0)=-1<0,f(1)=e-1>0,由零點(diǎn)存在性定理知x1∈(0,1);
因?yàn)楹瘮?shù)g(x)=lnx+x2-3在(0,+∞)上單調(diào)遞增,g(1)=-2<0,g(2)=ln2+1>0,由零點(diǎn)存在性定理知x2∈(1,2).
因?yàn)楹瘮?shù)g(x)=lnx+x2-3在(0,+∞)上單調(diào)遞增,且x1∈(0,1),所以g(x1)<g(1)<0;
因?yàn)楹瘮?shù)f(x)=ex+x-2在R上單調(diào)遞增,且x2∈(1,2),所以f(x2)>f(1)>0.
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=x2+4x+1,
(1)求f(2x-1)的解析式;
(2)當(dāng)x=4時(shí),求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系內(nèi),點(diǎn)P(a,b)的坐標(biāo)滿足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又點(diǎn)P到原點(diǎn)的距離|OP|≥5,則這樣的點(diǎn)P的個(gè)數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.觀察下列等式:
$\frac{3}{1×2}×\frac{1}{2}=1-\frac{1}{2^2}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}=1-\frac{1}{{3×{2^2}}}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+\frac{5}{3×4}×\frac{1}{2^3}=1-\frac{1}{{4×{2^3}}}$,
…,
由以上等式得$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+…+\frac{7}{5×6}×\frac{1}{2^5}$==$1-\frac{1}{{6×{2^5}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,設(shè)向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角A的大小是( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.當(dāng)a=2時(shí),如圖所示的程序段輸出的結(jié)果是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在數(shù)列{an}中,a1=1,an=$\frac{{{a_{n-1}}}}{{c{a_{n-1}}+1}}$(c為常數(shù),n∈N*,n≥2),又a1,a2,a5成公比不為l的等比數(shù)列.
(I)求證:{$\frac{1}{a_n}$}為等差數(shù)列,并求c的值;
(Ⅱ)設(shè){bn}滿足b1=$\frac{2}{3}$,bn=an-1an+1(n≥2,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)fn(x)=(1+x)n,n∈N*
(1)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù);
(2)若h(x)=fn(x)+fn($\frac{1}{x}$),求h2011(x)在區(qū)間[$\frac{1}{3}$,2]上的最大值與最小值;
(3)證明:Cmm+2Cmm+1+3Cmm+2+…+nCmm+n-1=$\frac{(m+1)n+1}{m+2}$•Cm+1m+n(m,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知全集U=R,A={x|-2<x<2},B={x|x<-1或x>4},
(1)求A∩B
(2)求∁UB
(3)A∪(∁UB)

查看答案和解析>>

同步練習(xí)冊(cè)答案