分析 (Ⅰ) 利用余弦定理表示出cosC,將已知等式變形后代入求出cosC的值,確定出C的度數(shù),代入tan(C-$\frac{π}{4}$)計算即可求出值;
(Ⅱ)把c的值代入已知等式變形,利用基本不等式求出ab的最大值,再由sinC的值,即可求出三角形ABC面積的最大值.
解答 解:(Ⅰ)∵a2+b2=ab+c2,a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C為△ABC內(nèi)角,
∴C=$\frac{π}{3}$,
則tan(C-$\frac{π}{4}$)=tan($\frac{π}{3}$-$\frac{π}{4}$)=$\frac{\sqrt{3}-1}{1+\sqrt{3}}$=2-$\sqrt{3}$;
(Ⅱ)由ab+3=a2+b2≥2ab,得ab≤3,
∵S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,
∴S△ABC≤$\frac{3\sqrt{3}}{4}$,
當(dāng)且僅當(dāng)a=b=$\sqrt{3}$時“=”成立,
則S△ABC的最大值是$\frac{{3\sqrt{3}}}{4}$.
點評 此題考查了余弦定理,三角形面積公式,以及基本不等式的運用,熟練掌握定理及公式是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{\sqrt{3}}{2}$,0] | B. | [-$\frac{3}{4}$,0] | C. | [-$\frac{\sqrt{3}}{4}$,0] | D. | [-3,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{4}{3}$] | B. | [0,$\frac{1}{2}$] | C. | (-∞,0]∪[$\frac{4}{3}$,+∞) | D. | [0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個單位長度 | B. | 向右平移$\frac{π}{8}$個單位長度 | ||
C. | 向左平移$\frac{π}{4}$個單位長度 | D. | 向右平移$\frac{π}{4}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,3,4,2} | B. | {0,2} | C. | {1,5} | D. | {2,0,1,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com