3.在△ABC中,角A,B,C的所對的邊分別為a,b,c,且a2+b2=ab+c2
(Ⅰ) 求tan(C-$\frac{π}{4}$)的值;
(Ⅱ) 若c=$\sqrt{3}$,求S△ABC的最大值.

分析 (Ⅰ) 利用余弦定理表示出cosC,將已知等式變形后代入求出cosC的值,確定出C的度數(shù),代入tan(C-$\frac{π}{4}$)計算即可求出值;
(Ⅱ)把c的值代入已知等式變形,利用基本不等式求出ab的最大值,再由sinC的值,即可求出三角形ABC面積的最大值.

解答 解:(Ⅰ)∵a2+b2=ab+c2,a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C為△ABC內(nèi)角,
∴C=$\frac{π}{3}$,
則tan(C-$\frac{π}{4}$)=tan($\frac{π}{3}$-$\frac{π}{4}$)=$\frac{\sqrt{3}-1}{1+\sqrt{3}}$=2-$\sqrt{3}$;
(Ⅱ)由ab+3=a2+b2≥2ab,得ab≤3,
∵S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,
∴S△ABC≤$\frac{3\sqrt{3}}{4}$,
當(dāng)且僅當(dāng)a=b=$\sqrt{3}$時“=”成立,
則S△ABC的最大值是$\frac{{3\sqrt{3}}}{4}$.

點評 此題考查了余弦定理,三角形面積公式,以及基本不等式的運用,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直角三角形ABC中,A為直角,AB=1,BC=2,若點AM是BC邊上的高線,點P在△ABC 內(nèi)部或邊界上運動,則$\overrightarrow{AM}$•$\overrightarrow{BP}$的范圍是( 。
A.[-$\frac{\sqrt{3}}{2}$,0]B.[-$\frac{3}{4}$,0]C.[-$\frac{\sqrt{3}}{4}$,0]D.[-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的離心率為2,一個焦點到一條漸近線的距離為1,則該雙曲線的方程為3x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線y=kx+2與圓(x+2)2+(y-1)2=4相交于M,N兩點,若|MN|≥2$\sqrt{3}$,則k的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{4}{3}$]B.[0,$\frac{1}{2}$]C.(-∞,0]∪[$\frac{4}{3}$,+∞)D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.要得到函數(shù)f(x)=sin(2x+$\frac{π}{4}$)的圖象,只需將函數(shù)g(x)=sin2x的圖象(  )
A.向左平移$\frac{π}{8}$個單位長度B.向右平移$\frac{π}{8}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向右平移$\frac{π}{4}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合U={2,0,1,3,4,5},集合A={0,3,4,2},B={0,1,2,3,4},則∁U(A∩B)=( 。
A.{0,3,4,2}B.{0,2}C.{1,5}D.{2,0,1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.y=x2-kx,在x=1處的切線與y=x+1垂直,則k的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,PA是圓的切線,A為切點,PBC是圓的割線,且PB=$\frac{1}{2}$BC,則$\frac{PA}{PB}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,命題q:函數(shù)y=f(x)單調(diào)遞增區(qū)間為[a,b],則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案