13.已知角θ的終邊在直線y=-2x上,則tan(-$\frac{π}{4}$+θ)-5cos2θ=( 。
A.3B.6C.-3D.-6

分析 利用已知條件求出正切函數(shù)值,然后化簡(jiǎn)求解即可.

解答 解:角θ的終邊在直線y=-2x上,可得tanθ=-2.
則tan(-$\frac{π}{4}$+θ)-5cos2θ=$\frac{tanθ-tan\frac{π}{4}}{1+tanθtan\frac{π}{4}}$-$\frac{5co{s}^{2}θ-5si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$
=$\frac{-2-1}{1-2}$+$\frac{5-5tanθ}{1+ta{n}^{2}θ}$
=3+$\frac{5+10}{1+4}$
=6.
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,已知二次函數(shù)y=-x2+4x+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),并且與函數(shù)y=x的圖象交于O,A兩點(diǎn).求:
(1)該二次函數(shù)的解析式;
(2)點(diǎn)A的坐標(biāo);
(3)若一條平行于y軸的直線與線段OA交于點(diǎn)F,與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,求線段EF的最大長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義在[0,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)于任意的x≥0,恒有f′(x)>f(x),a=e3f(2),b=e2f(3),則a,b的大小關(guān)系是( 。
A.a>bB.a<bC.a=bD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在平面四邊形ABCD中,若AC=6,($\overrightarrow{AB}+\overrightarrow{DC}$)•($\overrightarrow{AC}+\overrightarrow{BD}$)=11,則BD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若y=1-sin2x-mcosx的最小值為-4,則m的值為±5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.課本中介紹了應(yīng)用祖暅原理推導(dǎo)棱錐體積公式的做法.祖暅原理也可用來(lái)求旋轉(zhuǎn)體的體積.現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}+\frac{y^2}{25}=1$,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于$\frac{80π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=2,Sn+1=4an+2.
(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.△ABC中,已知cosA=$\frac{\sqrt{2}}{2}$,sinB=$\frac{\sqrt{3}}{3}$,則sinC=$\frac{\sqrt{6}+2\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow$∥$\overrightarrow{a}$,向量$\overrightarrow$的起點(diǎn)為A(1,2),終點(diǎn)B在坐標(biāo)軸上,則點(diǎn)B的坐標(biāo)為($\frac{7}{3}$,0)或(0,$\frac{7}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案