分析 運用橢圓的定義:到兩定點F1(0,-c),F(xiàn)2(0,c)(c>0)距離之和為定值2a(a>c)的點P的軌跡為橢圓.設P(x,y),由兩點間的距離公式,運用移項和兩邊平方,化簡整理,再令a2-c2=b2,即可得到所求橢圓方程.
解答 解:到兩定點F1(0,-c),F(xiàn)2(0,c)(c>0)距離之和
為定值2a(a>c)的點P的軌跡為橢圓.
設P(x,y),則$|P{F_1}|+|P{F_2}|=2a=\sqrt{{x^2}+{{(y+c)}^2}}+\sqrt{{x^2}+{{(y-c)}^2}}$
∴$2a-\sqrt{{x^2}+{{(y+c)}^2}}=\sqrt{{x^2}+{{(y-c)}^2}}$,
∴${(2a-\sqrt{{x^2}+{{(y+c)}^2}})^2}={\sqrt{{x^2}+{{(y-c)}^2}}^2}$,
∴$4{a^2}+{x^2}+{(y+c)^2}-4a\sqrt{{x^2}+{{(y+c)}^2}}={x^2}+{(y-c)^2}$
∴$4{a^2}+{x^2}+{(y+c)^2}-4a\sqrt{{x^2}+{{(y+c)}^2}}={x^2}+{(y-c)^2}$,
∴$a+\frac{c}{a}y=\sqrt{{x^2}+{{(y+c)}^2}}$(由定義可得y∈[-a,a],所以$a+\frac{c}{a}y>0)$,
∴${a^2}+2cy+\frac{c^2}{a^2}{y^2}={x^2}+{(y+c)^2}$
∴${x^2}+\frac{{{a^2}-{c^2}}}{a^2}{y^2}={a^2}-{c^2}$,即$\frac{x^2}{{{a^2}-{c^2}}}+\frac{y^2}{a^2}=1$,
又a>c,不妨令a2-c2=b2,
∴焦點在y軸上的橢圓的標準方程:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$.
點評 本題考查橢圓的方程的推導,注意運用定義法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5 | B. | 0 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | [0,1] | C. | (0,1] | D. | [0,1) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com