15.已知集合M={x|ax2-1=0,x∈R}是集合N={y||y-1|≤1且y∈N*}的真子集,則實數(shù)a的取值個數(shù)是無數(shù)個.

分析 解不等式求出N,進而根據(jù)集合真包含的定義,可得滿足條件的實數(shù)a的取值個數(shù).

解答 解:∵集合N={y||y-1|≤1且y∈N*}={1,2},
若集合M={x|ax2-1=0,x∈R}是集合N={y||y-1|≤1且y∈N*}的真子集,
則M=∅,
即a=0,或△=-4a<0,
故a≤0,
則實數(shù)a的取值有無數(shù)個,
故答案為:無數(shù)個

點評 本題考查的知識點是子集與真子集,不等式的解法,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=x+$\frac{4}{x}$,則下列結論正確的是(  )
A.f(x)的最小值為4
B.f(x)在(0,2)上單調遞減,在(2,+∞)上單調遞增
C.f(x)的最大值為4
D.f(x)在(0,2)上單調遞增,在(2,+∞)上單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線y2=4x的焦點到雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的距離為$\frac{1}{2}$,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,四面體ABCD中,AB=DC=1,BD=$\sqrt{2}$,AD=BC=$\sqrt{3}$,二面角A-BD-C的平面角的大小為60°,E,F(xiàn)分別是BC,AD的中點,則異面直線EF與AC所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義在(0,+∞)上的函數(shù)f(x)滿足:對任意正數(shù)a,b,若f(a)-f(b)=1,則a-b<1,
稱f(x)是(0,+∞)上的“1級函數(shù)”,給出函數(shù)f(x)=x3,g(x)=ex,h(x)=x+lnx,其中“1級函數(shù)”的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x+2y-1=0垂直,則雙曲線的離心率等于( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)cos(x-$\frac{π}{6}$),x∈R
(1)求f(x)的單調遞增區(qū)間;
(2)設函數(shù)g(x)=f(x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知m,n∈R,則“mn>0”是“一次函數(shù)y=$\frac{m}{n}x$+$\frac{1}{n}$的圖象不經過第二象限”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知等差數(shù)列{an}的公差不為0,a1=1,且$\frac{1}{a_1},\;\frac{1}{a_2},\;\frac{1}{a_4}$成等比數(shù)列,設{an}的前n項和為Sn,則Sn=(  )
A.$\frac{{{{(n+1)}^2}}}{4}$B.$\frac{n(n+3)}{4}$C.$\frac{n(n+1)}{2}$D.$\frac{{{n^2}+1}}{2}$

查看答案和解析>>

同步練習冊答案