5.將兩個數(shù)a=5,b=23交換,使a=23,b=5,下面語句正確的一組是(  )
A.a=b b=aB.c=b b=a  a=cC.b=a a=bD.a=c c=b b=a

分析 要實現(xiàn)兩個變量a,b值的交換,需要借助中間量c,先把b的值賦給中間變量c,再把a的值賦給變量b,把c的值賦給變量a.

解答 解:將兩個數(shù)a=5,b=23交換,使a=23,b=5,
應(yīng)引入中間變量c,令c=b=23,b=a=5,a=c=23;
從而使a、b數(shù)值的交換.
故選:B.

點評 本題考查的是賦值語句,考查邏輯思維能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),經(jīng)研究發(fā)現(xiàn):任何一個三次函數(shù)都有對稱中心,且對稱中心為(-$\frac{3a}$,f(-$\frac{3a}$)).若f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,則f($\frac{1}{n}}$)+f(${\frac{2}{n}}$)+f(${\frac{3}{n}}$)+…+f(${\frac{n-1}{n}}$)=n-1.(n≥2且n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線y=kx+3與(x-1)2+(y-2)2=4相交于M,N兩點,MN≥2$\sqrt{3}$,則k的取值范圍是k≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3-3x2-k有三個不同的零點,則實數(shù)k的取值范圍是(  )
A.(-4,0)B.[-4,0)C.(-∞,-4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a;
(2)求出R2檢驗所求回歸方程是否可靠;
(3)進行殘差分析.
(4)試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$         $\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$    R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一組數(shù)據(jù)按從小到大順序排列為1,2,4,x,6,9這組數(shù)據(jù)的中位數(shù)為5,那么這組數(shù)據(jù)的眾數(shù)為( 。
A.4B.5C.5.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=4x3+k•$\root{3}{x}$+1(k∈R),若f(2)=8,則f(-2)的值為( 。
A.-6B.-7C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.球O與銳二面角α-l-β的兩半平面相切,兩切點間的距離為$\sqrt{3}$,O點到交線l的距離為2,則球O的體積為(  )
A.$\frac{4π}{3}$B.C.12πD.$4\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.log3$\sqrt{27}$+lg25+lg4-7${\;}^{lo{g}_{7}2}$-(-9.8)0=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案