16.若?x,y∈(0,+∞),恒有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤a≤$\frac{x}{x+2y}$$+\frac{y}{2x+y}$,則常數(shù)a=$\frac{2}{3}$.

分析 由題意可令x=y,推得a=$\frac{2}{3}$,再由作差法,化簡(jiǎn)和配方,結(jié)合恒成立思想即可得到結(jié)論.

解答 解:由題意可設(shè)x=y,可得$\frac{2}{3}$≤a≤$\frac{2}{3}$,
即有a=$\frac{2}{3}$,
由$\frac{x}{2x+y}$$+\frac{y}{x+2y}$-$\frac{2}{3}$=($\frac{x}{2x+y}$-$\frac{1}{3}$)+($\frac{y}{x+2y}$-$\frac{1}{3}$)=$\frac{x-y}{3(2x+y)}$+$\frac{y-x}{3(x+2y)}$
=-$\frac{(x-y)^{2}}{3(2x+y)(x+2y)}$≤0,
即有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤$\frac{2}{3}$,則a≥$\frac{2}{3}$;
由$\frac{x}{x+2y}$$+\frac{y}{2x+y}$-$\frac{2}{3}$=($\frac{x}{x+2y}$-$\frac{1}{3}$)+($\frac{y}{y+2x}$-$\frac{1}{3}$)
=$\frac{2(x-y)}{3(x+2y)}$+$\frac{2(y-x)}{3(y+2x)}$=$\frac{2(x-y)^{2}}{3(x+2y)(y+2x)}$≥0,
可得$\frac{x}{x+2y}$$+\frac{y}{2x+y}$≥$\frac{2}{3}$,即有a≤$\frac{2}{3}$.
綜上可得a=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查不等式恒成立問(wèn)題的解法,注意運(yùn)用特值法引路,作差法證明,考查運(yùn)算和推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正實(shí)數(shù)a,b,c,d滿足a+b+c+d=1.
求證:$\sqrt{1+2a}$+$\sqrt{1+2b}$+$\sqrt{1+2c}$+$\sqrt{1+2d}$≤2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知圓C:(x-1)2+y2=16及圓內(nèi)一點(diǎn)A(-1,0),P是圓上任意一點(diǎn).線段AP的垂直平分線l和半徑CP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),則點(diǎn)Q的軌跡方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{4}-\frac{y^2}{3}=1$D.$\frac{x^2}{4}-{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知方程$\left\{\begin{array}{l}{x=t+\frac{s}{t}}\\{y=t-\frac{s}{t}}\end{array}\right.$(s,t∈R,且s>0,t>0).若以s為常數(shù)、t為參數(shù)的方程表示曲線C1;以t為常數(shù)、s為參數(shù)的方程表示曲線C2,那么C1,C2依次為雙曲線,直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.證明:$\frac{1}{2×3}+\frac{1}{3×5}+…+\frac{1}{(n+1)(2n+1)}<\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.點(diǎn)P在△ABC的邊BC所在直線上,且滿足$\overrightarrow{AP$=2m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),則在平面直角坐標(biāo)系中,動(dòng)點(diǎn)Q(m+n,m-n)的軌跡的普通方程為3x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$與直線x-y=1交于P、Q兩點(diǎn),且OP⊥OQ,其O為坐標(biāo)原點(diǎn).若$\frac{{\sqrt{2}}}{2}a≤b≤\frac{{\sqrt{6}}}{3}a$,則a取值范圍是( 。
A.$[{\frac{{\sqrt{3}}}{2},1}]$B.$[{\sqrt{3},2}]$C.$[{\frac{{\sqrt{5}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{\sqrt{5},\sqrt{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.有三位環(huán)保專家從四個(gè)城市中每人隨機(jī)選取一個(gè)城市完成一項(xiàng)霧霾天氣調(diào)查報(bào)告,三位專家選取的城市可以相同,也可以不同.
(1)求三位環(huán)保專家選取的城市各不相同的概率;
(2)設(shè)選取某一城市的環(huán)保專家有ξ人,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a,b∈R+,m,n∈N*
(Ⅰ)求證:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求證:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案