分析 本題是一個(gè)全部性問題,要證的結(jié)論與條件之間的聯(lián)系不明顯,直接由條件推出結(jié)論的線索不夠清晰.于是考慮采用反證法.假設(shè)a,b,c不全是正數(shù),這時(shí)需要逐個(gè)討論a,b,c不是正數(shù)的情形.但注意到條件的特點(diǎn)(任意交換a,b,c的位置不改變命題的條件),我們只要討論其中一個(gè)數(shù)(例如a),其他兩個(gè)數(shù)(例如b,c)與這種情形類似.
解答 證明:假設(shè)a,b,c是不全為正的實(shí)數(shù),由于abc>0,
則它們只能是兩負(fù)一正,不妨設(shè)a<0,b<0,c>0.…(3分)
又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,
∴a(b+c)>0.①…(7分)
又∵a<0,∴b+c<0.∴a+b+c<0…(10分)
這與a+b+c>0相矛盾.
故假設(shè)不成立,原結(jié)論成立,即a,b,c均為正實(shí)數(shù).…(12分)
點(diǎn)評 當(dāng)一個(gè)命題的結(jié)論是以“至多”“至少”“唯一”或以否定形式出現(xiàn)時(shí),宜用反證法來證.反證法關(guān)鍵是在正確的推理下得出矛盾,矛盾可以是①與已知條件矛盾,②與假設(shè)矛盾,③與定義、公理、定理矛盾,④與事實(shí)矛盾等方面.反證法常常是解決某些“疑難”問題的有力工具,是數(shù)學(xué)證明中的一件有力武器.推理與證明是數(shù)學(xué)的一般思考方式,也是學(xué)數(shù)學(xué)、做數(shù)學(xué)的基本功.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b≤-2或b≥3 | B. | -2≤b≤3 | C. | -2<b<3 | D. | b<-2或b>3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com