13.推理與證明是數(shù)學(xué)的一般思考方式,也是學(xué)數(shù)學(xué)、做數(shù)學(xué)的基本功.請選擇你認(rèn)為合適的證明方法,完成下面的問題.
已知a,b,c∈R,a+b+c>0,ab+bc+ca>0,abc>0.求證:a,b,c,全為正數(shù).

分析 本題是一個(gè)全部性問題,要證的結(jié)論與條件之間的聯(lián)系不明顯,直接由條件推出結(jié)論的線索不夠清晰.于是考慮采用反證法.假設(shè)a,b,c不全是正數(shù),這時(shí)需要逐個(gè)討論a,b,c不是正數(shù)的情形.但注意到條件的特點(diǎn)(任意交換a,b,c的位置不改變命題的條件),我們只要討論其中一個(gè)數(shù)(例如a),其他兩個(gè)數(shù)(例如b,c)與這種情形類似.

解答 證明:假設(shè)a,b,c是不全為正的實(shí)數(shù),由于abc>0,
則它們只能是兩負(fù)一正,不妨設(shè)a<0,b<0,c>0.…(3分)
又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,
∴a(b+c)>0.①…(7分)
又∵a<0,∴b+c<0.∴a+b+c<0…(10分)
這與a+b+c>0相矛盾.
故假設(shè)不成立,原結(jié)論成立,即a,b,c均為正實(shí)數(shù).…(12分)

點(diǎn)評 當(dāng)一個(gè)命題的結(jié)論是以“至多”“至少”“唯一”或以否定形式出現(xiàn)時(shí),宜用反證法來證.反證法關(guān)鍵是在正確的推理下得出矛盾,矛盾可以是①與已知條件矛盾,②與假設(shè)矛盾,③與定義、公理、定理矛盾,④與事實(shí)矛盾等方面.反證法常常是解決某些“疑難”問題的有力工具,是數(shù)學(xué)證明中的一件有力武器.推理與證明是數(shù)學(xué)的一般思考方式,也是學(xué)數(shù)學(xué)、做數(shù)學(xué)的基本功.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05.
對此,四名同學(xué)做出了以下的判斷:
p:有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
q:若某人未使用該血清,那么他在一年中有95%的可能性得感冒
r:這種血清預(yù)防感冒的有效率為95%
s:這種血清預(yù)防感冒的有效率為5%
則上述結(jié)論中,正確結(jié)論的序號是p,r..(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ex-mx+1(x≥0)的圖象為曲線C,若曲線C存在與直線y=ex垂直的切線,則實(shí)數(shù)m的取值范圍為($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C方程:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),M(x0,y0)是橢圓C上任意一點(diǎn),F(xiàn)(c,0)是橢圓的右焦點(diǎn).
(1)若橢圓的離心率為e,證明|MF|=a-ex0;
(2)已知不過焦點(diǎn)F的直線l與圓x2+y2=b2相切于點(diǎn)Q,并與橢圓C交于A,B兩點(diǎn),且A,B兩點(diǎn)都在y軸的右側(cè),若a=2,求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)某工廠加工某種零件有三道工序:粗加工、返修加工和精加工.每道工序完成時(shí),都要對產(chǎn)品進(jìn)行檢驗(yàn).粗加工的合格品進(jìn)入精加工,不合格進(jìn)入返修加工;返修加工的合格品進(jìn)入精加工,不合格品作為廢品
處理;精加工的合格品為成品,不合格品為廢品.用流程圖表示這個(gè)零件的加工過程.
(2)設(shè)計(jì)一個(gè)結(jié)構(gòu)圖,表示《數(shù)學(xué)選修1-2》第二章“推理與證明”的知識結(jié)構(gòu).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)(1,2)且與圓x2+y2=1相切的直線方程為3x-4y+5=0或x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0),命題q:2<x≤3
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log4[(4x+1)4kx](k∈R)為偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4(a•2x+1),若函數(shù)f(x)與g(x)圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+6)x+3在R上存在三個(gè)單調(diào)區(qū)間,則b的取值范圍是( 。
A.b≤-2或b≥3B.-2≤b≤3C.-2<b<3D.b<-2或b>3

查看答案和解析>>

同步練習(xí)冊答案