4.已知函數(shù)f(x)=ex-mx+1(x≥0)的圖象為曲線C,若曲線C存在與直線y=ex垂直的切線,則實(shí)數(shù)m的取值范圍為($\frac{1}{e}$,+∞).

分析 求出函數(shù)的導(dǎo)數(shù),運(yùn)用兩直線垂直的條件可得ex-m=-$\frac{1}{e}$有解,再由指數(shù)函數(shù)的單調(diào)性,即可得到m的范圍.

解答 解:函數(shù)f(x)=ex-mx+1的導(dǎo)數(shù)為f′(x)=ex-m,
若曲線C存在與直線y=ex垂直的切線,
即有ex-m=-$\frac{1}{e}$有解,
即m=ex+$\frac{1}{e}$,
由ex>0,則m>$\frac{1}{e}$.
則實(shí)數(shù)m的范圍為($\frac{1}{e}$,+∞).
故答案為:($\frac{1}{e}$,+∞).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處切線的斜率,同時(shí)考查兩直線垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知全集U={-2,-1,0,1,2,3},A={-1,0,1,2},∁UB={-1,0,3},則A∩B=(  )
A.{0,1,2}B.{1,3}C.{-2,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)A、B分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn),點(diǎn)P在C上且異于A、B兩點(diǎn),若直線AP與BP的斜率之積為-$\frac{1}{3}$,則C的離心率為$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.觀察下面兩個(gè)推理過(guò)程及結(jié)論:
(1)若銳角A,B,C滿足A+B+C=π,以角A,B,C分別為內(nèi)角構(gòu)造一個(gè)三角形,依據(jù)正弦定理和余弦定理可得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,
(2)若銳角A,B,C滿足A+B+C=π,則($\frac{π}{2}$-$\frac{A}{2}$)+($\frac{π}{2}$-$\frac{B}{2}$)+($\frac{π}{2}$-$\frac{C}{2}$)=π,以角$\frac{π}{2}$-$\frac{A}{2}$,$\frac{π}{2}$-$\frac{B}{2}$,$\frac{π}{2}$-$\frac{C}{2}$分別為內(nèi)角構(gòu)造一個(gè)三角形,依據(jù)正弦定理和余弦定理可以得到的等式:cos2$\frac{A}{2}$=cos2$\frac{B}{2}$+cos2$\frac{C}{2}$-2cos$\frac{B}{2}$cos$\frac{C}{2}$sin$\frac{A}{2}$.
則:若銳角A,B,C滿足A+B+C=π,類比上面推理方法,可以得到的一個(gè)等式是sin22A=sin22B+sin22C+2sin2Bsin2Ccos2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=\frac{{{2^x}-{2^{-x}}}}{2},g(x)=\frac{{{2^x}+{2^{-x}}}}{2}$,下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱
B.在同一坐標(biāo)系中,函數(shù)f(x)的圖象在函數(shù)g(x)的圖象的下方
C.函數(shù)g(x)的值域是[1,+∞)
D.g(2x)=2f(x)g(x)在(-∞,+∞)恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=ax(a>0且a≠1)和函數(shù)g(x)=sin$\frac{π}{2}$x,若f(x)的反函數(shù)為h(x),且h(x)與g(x)兩圖象只有3個(gè)交點(diǎn),則a的取值范圍是(  )
A.$(\frac{1}{5},1)∪(1,\frac{9}{2})$B.$(0,\frac{1}{7})∪(1,\frac{9}{2})$C.$(\frac{1}{7},\frac{1}{3})∪(5,9)$D.$(\frac{1}{7},\frac{1}{2})∪(3,9)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿足4$\overrightarrow{a}$2+$\overrightarrow{a}$$•\overrightarrow$+$\overrightarrow$2=1,求|2$\overrightarrow{a}$+$\overrightarrow$|的最大值$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.推理與證明是數(shù)學(xué)的一般思考方式,也是學(xué)數(shù)學(xué)、做數(shù)學(xué)的基本功.請(qǐng)選擇你認(rèn)為合適的證明方法,完成下面的問(wèn)題.
已知a,b,c∈R,a+b+c>0,ab+bc+ca>0,abc>0.求證:a,b,c,全為正數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.用分析法證明:$\sqrt{3}$-$\sqrt{2}$>$\sqrt{6}$-$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案