5.已知二次函數(shù)f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(0,1),且有唯一的零點(diǎn)-1.
(I)求f(x)的表達(dá)式;
(Ⅱ)求函數(shù)F(x)=f(x)-7x,x∈[-2,2]的最小值.

分析 (Ⅰ)由已知中二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且有唯一的零點(diǎn)-1.構(gòu)造關(guān)于a,b,c的方程組,可得f(x)的表達(dá)式;  
(Ⅱ)F(x)=x2-5x+1,對(duì)稱軸為x=$\frac{5}{2}$,圖象開(kāi)口向上,F(xiàn)(x)在[-2,2]上單調(diào)遞減,即可求出其最小值.

解答 解:(Ⅰ)依題意得c=1,-$\frac{2a}$=-1,b2-4ac=0
解得a=1,b=2,c=1,
從而f(x)=x2+2x+1;  …(3分)
(Ⅱ)F(x)=x2-5x+1,對(duì)稱軸為x=$\frac{5}{2}$,圖象開(kāi)口向上
∴F(x)在[-2,2]上單調(diào)遞減,
此時(shí)函數(shù)F(x)的最小值F(2)=-5    …(10分)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),求函數(shù)的解析式,函數(shù)的最值,是二次函數(shù)圖象和性質(zhì)的綜合考查,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若方程x2+y2-x+2y+m=0表示一個(gè)圓,則m的取值范圍為(-∞,$\frac{5}{4}$);此時(shí),它的圓心坐標(biāo)為($\frac{1}{2}$,-1);若m=1,則半徑為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖所示;
(1)分別寫(xiě)出終邊落在0A,0B位置上的角的集合;
(2)寫(xiě)出終邊落在陰影部分(包括邊界)的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義域?yàn)镽的函數(shù)f(x),滿足對(duì)任意x∈R,都有f(1+x)=f(1-x),且f(-x)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=x,若函數(shù)g(x)=$\left\{\begin{array}{l}{lgx}&{(x>0)}\\{\frac{-2}{x-1}}&{(x≤0)}\end{array}\right.$,則函數(shù)y=f(x)-g(x)在區(qū)間[-11,11]上的零點(diǎn)的個(gè)數(shù)是( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直角△ABC,∠C=90°,若AC=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.不等式$\frac{6-x{-x}^{2}}{{2x}^{2}-x-1}$≥0的解集是[-3,-$\frac{1}{2}$)∪(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若a>0且a≠1下列計(jì)算中正確的是(  )
A.a2×${a}^{\frac{1}{2}}$=aB.a2÷${a}^{\frac{1}{2}}$=aC.${(a}^{2})^{\frac{1}{2}}$=aD.a2×a-2=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知x∈R,y∈R,i為虛數(shù)單位,且[(x-2)i+y](1-i)=2008-1004i,($\frac{1+i}{1-i}$)x+y的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在正方體ABCD-A1B1C1D1中,下列幾種說(shuō)法不正確的是( 。
A.A1C1⊥BDB.D1C1∥AB
C.二面角A1-BC-D的平面角為45°D.AC1與平面ABCD所成的角為45°

查看答案和解析>>

同步練習(xí)冊(cè)答案