【題目】已知函數(shù)

1若函數(shù)在定義域上是單調(diào)增函數(shù),求的最小值;

2若方程在區(qū)間上有兩個(gè)不同的實(shí)根,求的取值范圍

【答案】1;2

【解析】

試題分析:1求出導(dǎo)函數(shù)令導(dǎo)函數(shù)大于等于恒成立或小于等于恒成立分離出,利用基本不等式求出的范圍, 從而求出的最小值;2,得利用導(dǎo)數(shù)研究其單調(diào)性及最值, 從而得出有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍

試題解析:解:1

若函數(shù)上遞增,

對(duì)恒成立,即對(duì)恒成立,

而當(dāng)時(shí),,

若函數(shù)上遞減,

對(duì)恒成立,即對(duì)恒成立,

這是不可能的

綜上,

的最小值為1

2

,令,

的根為1,

所以當(dāng)時(shí),,則單調(diào)遞增;

當(dāng)時(shí),,則單調(diào)遞減,

所以處取到最大值

時(shí),又時(shí),

所以要使有兩個(gè)不同的交點(diǎn),則有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.圓錐的底面是圓面,側(cè)面是曲面

B.用一張扇形的紙片可以卷成一個(gè)圓錐

C.一個(gè)物體上、下兩個(gè)面是相等的圓面,那么它一定是一個(gè)圓柱

D.圓臺(tái)的任意兩條母線的延長(zhǎng)線可能相交也可能不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過點(diǎn),直線軸于,且, 為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)是橢圓的上頂點(diǎn),過點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取個(gè)農(nóng)戶,考察每個(gè)農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個(gè)農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對(duì)年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取個(gè)農(nóng)戶,考察每個(gè)農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個(gè)農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對(duì)年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如下:

試著根據(jù)表中的信息解答下列問題:

(Ⅰ)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);

(Ⅱ)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80)和[80,90)分?jǐn)?shù)段的試卷中抽取7份進(jìn)行分析,再?gòu)闹腥芜x2人進(jìn)行交流,求交流的學(xué)生中,成績(jī)位于[70,80)分?jǐn)?shù)的人恰有一人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海州市英才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

晝夜溫差

就診人數(shù)個(gè)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

1求選取的組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

2若選取的是月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.

其中回歸系數(shù)公式,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是t為參數(shù)).

1求曲線C的直角坐標(biāo)方程和直線L的普通方程;

2設(shè)點(diǎn)Pm,0,若直線L與曲線C交于兩點(diǎn)A,B,且,求實(shí)數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,側(cè)面底面,中點(diǎn),.

(I)在線段上是否存在點(diǎn),使得//平面,指出點(diǎn)的位置并證明;

II)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案