7.已知命題p:x>0,q:x>sinx,則p是q的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:設(shè)f(x)=x-sinx,則f′(x)=1-cosx≥0,
則函數(shù)f(x)為增函數(shù),
∵則當(dāng)x>0時(shí),f(x)>f(0),
即x-sinx>0,則x>sinx,
反之,也成立,
故p是q的充要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)導(dǎo)數(shù)研究函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}m{x}^{2}$+x,m∈R令F(x)=f(x)+g(x).
(Ⅰ)當(dāng)m=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=-2,正實(shí)數(shù)x1,x2滿(mǎn)足F(x1)+F(x2)+x1x2=0,證明:x1+x2$≥\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某同學(xué)想求斐波那契數(shù)列0,1,1,2,…(從第三項(xiàng)起每一項(xiàng)等于前兩項(xiàng)的和)的前10項(xiàng)的和,他設(shè)計(jì)了一個(gè)程序框圖,那么在空白矩形框和判斷框內(nèi)應(yīng)分別填入的語(yǔ)句是( 。
A.b=c,i≤10B.c=a,i≤10C.b=c,i≤9D.c=a,i≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示,該程序框圖的功能是計(jì)算數(shù)列{2n-1}前6項(xiàng)的和,則判斷框內(nèi)應(yīng)填入的條件為( 。
A.i>5B.i≥5C.i>6D.i≥6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1+a7=-9,S9=-$\frac{99}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{2{S}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn>-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{2}$an=1,則數(shù)列{an}的通項(xiàng)公式為an=$\frac{2}{{3}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積的是( 。 
A.7B.$\frac{15}{2}$C.$\frac{23}{3}$D.$\frac{47}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={1,2,3,4},B={x|x=$\sqrt{n}$,n∈A},則A∩B的子集個(gè)數(shù)是(  )
A.2B.3C.4D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案