18.某同學(xué)想求斐波那契數(shù)列0,1,1,2,…(從第三項(xiàng)起每一項(xiàng)等于前兩項(xiàng)的和)的前10項(xiàng)的和,他設(shè)計(jì)了一個(gè)程序框圖,那么在空白矩形框和判斷框內(nèi)應(yīng)分別填入的語(yǔ)句是( 。
A.b=c,i≤10B.c=a,i≤10C.b=c,i≤9D.c=a,i≤9

分析 由斐波那契數(shù)列從第三項(xiàng)起每一項(xiàng)等于前兩項(xiàng)的和,由程序框圖從而判斷空白矩形框內(nèi)應(yīng)為:b=c,模擬執(zhí)行程序框圖,當(dāng)?shù)?次循環(huán)時(shí),i=10,由題意不滿(mǎn)足條件,退出執(zhí)行循環(huán),輸出S的值,即可得判斷框內(nèi)應(yīng)為i≤9.

解答 解:由題意,斐波那契數(shù)列0,1,1,2,…,從第三項(xiàng)起每一項(xiàng)等于前兩項(xiàng)的和,分別用a,b來(lái)表示前兩項(xiàng),c表示第三項(xiàng),S為數(shù)列前n項(xiàng)和,
故空白矩形框內(nèi)應(yīng)為:b=c,
第1次循環(huán):a=0,b=1,S=0+4=1,i=3,求出第3項(xiàng)c=1,求出前3項(xiàng)和S=0+1+1=2,a=1,b=1,滿(mǎn)足條件,i=4,執(zhí)行循環(huán);
第2次循環(huán):求出第4項(xiàng)c=1+1=2,求出前4項(xiàng)和S=0+1+1+2=4,a=1,b=2,滿(mǎn)足條件,i=5,執(zhí)行循環(huán);

第8次循環(huán):求出第10項(xiàng)c,求出前10項(xiàng)和S,此時(shí)i=10,由題意不滿(mǎn)足條件,退出執(zhí)行循環(huán),輸出S的值.
故判斷框內(nèi)應(yīng)為i≤9.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖解決實(shí)際問(wèn)題,循環(huán)結(jié)構(gòu)有兩種形式:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后循環(huán),直到型循環(huán)是先循環(huán)后判斷.算法和程序框圖是新課標(biāo)新增的內(nèi)容,在近兩年的新課標(biāo)地區(qū)高考都考查到了,這啟示我們要給予高度重視,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知tanα=2,則tan2α的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為$\frac{19}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.用2、3、4、5、6這5個(gè)數(shù)作為基本元素,構(gòu)造以下兩類(lèi)基本問(wèn)題:
(1)從上面兩個(gè)數(shù)中,每次取出2個(gè)不同數(shù)字的組合問(wèn)題;
(2)從上面兩個(gè)數(shù)中,每次取出2個(gè)不同數(shù)字的排列問(wèn)題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.?dāng)?shù)列{an}是公差不為-1的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.z=1+i,$\overline{z}$為復(fù)數(shù)z的共軛復(fù)數(shù),則z+$\overrightarrow{z}+|\overrightarrow{z}|-1$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|2x-1|+a(a∈R),且不等式解集為{x|-2≤x≤3}.
(1)求實(shí)數(shù)a的值;
(2)若存在實(shí)數(shù)n使得f(x)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:x>0,q:x>sinx,則p是q的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a、b、c∈R+,證明1<$\frac{a}{a+b}$+$\frac{b+c}$+$\frac{c}{c+a}$<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案