20.設(shè)函數(shù)F(x)=$\frac{f(x)}{{e}^{x}}$是定義在R上的函數(shù),其中f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x)對于x∈R恒成立,則(  )
A.f(2)>e2f(0),f(2012)<e2012f(0)B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)D.f(2)<e2f(0),f(2012)>e2012f(0)

分析 求函數(shù)F(x)=$\frac{f(x)}{{e}^{x}}$的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,利用單調(diào)性進(jìn)行判斷即可.

解答 解:∵F(x)=$\frac{f(x)}{{e}^{x}}$,
∴函數(shù)的導(dǎo)數(shù)F′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),
∴F′(x)<0,
即函數(shù)F(x)是減函數(shù),
則F(0)>F(2),F(xiàn)(0)>F(2012),
即$\frac{f(0)}{{e}^{0}}>\frac{f(2)}{{e}^{2}}$,$\frac{f(0)}{{e}^{0}}$>$\frac{f(2012)}{{e}^{2012}}$
即f(2)<e2f(0),f(2012)<e2012f(0),
故選:B

點(diǎn)評 本題主要考查函數(shù)值的大小比較,根據(jù)條件求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線與橢圓$\frac{x^2}{64}+\frac{y^2}{16}=1$有相同的焦點(diǎn),若雙曲線的一條漸近線方程是$x+\sqrt{3}y=0$,則雙曲線的方程為$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列求導(dǎo)數(shù)運(yùn)算錯誤的是(  )
A.(3x)′=3xln3
B.(x2lnx)′=2xlnx+x
C.$(\frac{cosx}{x})'=\frac{xsinx-cosx}{x^2}$
D.$({2^{ln({x^2}+1)}})'=\frac{2xln2}{{{x^2}+1}}•{2^{ln({x^2}+1)}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果復(fù)數(shù)z滿足|z+3i|+|z-3i|=6,那么|z+1+i|的最小值是( 。
A.1B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=xcosx+sinx的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.四面體ABCD的四個頂點(diǎn)都在球O的表面上,AB⊥面BCD,△BCD三角形,若AB=2,則球O的表面積是16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=ax-lnx,g(x)=ex-ax,其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)g(x)的極值點(diǎn),討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.過拋物線x2=8y的準(zhǔn)線上一點(diǎn)P向該拋物線引兩條切線,切點(diǎn)分別為A,B,直線AB與橢圓$\frac{y^2}{8}+\frac{x^2}{4}=1$相交于M,N兩點(diǎn).
(1)求證直線AB過定點(diǎn).
(2)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知csinA=$\sqrt{3}$acosC.
(1)求角C的大;
(2)c=$\sqrt{7}$,A≠$\frac{π}{2}$,sinC+sin(B-A)=3sin2A,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案