9.已知ω>0,函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在(0,$\frac{π}{2}$)單調(diào)遞增,則ω的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

分析 根據(jù)x的取值范圍,求出ωx+$\frac{π}{4}$的取值范圍;再根據(jù)題意求出周期T,列出不等式,求出ω的取值范圍.

解答 解:∵x∈(0,$\frac{π}{2}$),ω>0,
∴ωx+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{πω}{2}$+$\frac{π}{4}$);
又函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)在(0,$\frac{π}{2}$)上單調(diào)遞增,
∴周期T=$\frac{2π}{ω}$≥π,得ω≤2;
又∵f(x)=sin(ωx+$\frac{π}{4}$)的單調(diào)增區(qū)間滿足:
-$\frac{π}{2}$+2kπ<ωx+$\frac{π}{4}$<$\frac{π}{2}$+2kπ,k∈Z;
令k=0,得$\left\{\begin{array}{l}{\frac{π}{4}≥-\frac{π}{2}}\\{\frac{πω}{2}+\frac{π}{4}≤\frac{π}{2}}\end{array}\right.$,
解得ω≤$\frac{1}{2}$;
綜上,ω的取值范圍是(0,$\frac{1}{2}$].
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,著重考查了正弦函數(shù)的單調(diào)性與三角函數(shù)圖象的變換問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.a(chǎn)1=4,an+1=an2+6an+6,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若f(x)=7x2-3x+1,則f(x+h)-f(x)等于(  )
A.7h2-hB.14xh-6x+2C.xh+h2+hD.h(14x+7h-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定義在R上的單調(diào)函數(shù)f(x)滿足f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)求證:f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an}中,若:
(1)a5=7,S10=190,求an與Sn;
(2)S4=52,S9=252,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos12°cos18°-sin12°sin18°=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}前n項(xiàng)和為Sn,若a1=1,an+an+1=2n-1,則S49=1175;若a1=1,an-1•an=2n(n∈N*),則S2015=3×21008-5;若an+1+(-1)nan=2n-1,則S40=820.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.A={x|x2-2x-3<0},B={x|(x-m-1)(x-m+1)≥0}
(1)當(dāng)m=3時(shí),求A∪B
(2)若p:x2-2x-3<0;q:(x-m-1)(x-m+1)≥0且q是p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在直徑為$\sqrt{269}$的球面上,且AB=5,AC=12,BC=13,點(diǎn)D是BB1的中點(diǎn),則AD與平面BCC1B1所成角的正弦值為( 。
A.$\frac{6}{13}$B.$\frac{5}{13}$C.$\frac{6\sqrt{2}}{13}$D.$\frac{5\sqrt{2}}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案