20.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且g(x)=2f(x)+f′(x),把g(x)的圖象向右平移φ(φ>0)個單位,得到的函數(shù)為偶函數(shù),則φ的最小值為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{12}$D.$\frac{π}{24}$

分析 由條件可求f′(x),根據(jù)三角函數(shù)恒等變換的應(yīng)用可求g(x),進而根據(jù)正弦函數(shù)的奇偶性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得φ的值.

解答 解:∵f(x)=sin(2x+$\frac{π}{3}$),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),
∴f′(x)=2cos(2x+$\frac{π}{3}$),
∴g(x)=2f(x)+f′(x)=2sin(2x+$\frac{π}{3}$)+2cos(2x+$\frac{π}{3}$)=2$\sqrt{2}$sin(2x+$\frac{π}{3}$+$\frac{π}{4}$)=2$\sqrt{2}$sin(2x+$\frac{7π}{12}$),
∴把g(x)的圖象向右平移φ(φ>0)個單位,得到的函數(shù)解析式為:y=2$\sqrt{2}$sin[2(x-φ)+$\frac{7π}{12}$]=2$\sqrt{2}$sin(2x-2φ+$\frac{7π}{12}$),
∵得到的此函數(shù)為偶函數(shù),可得:-2φ+$\frac{7π}{12}$=kπ+$\frac{π}{2}$,k∈Z,即 φ═$\frac{π}{24}$-$\frac{kπ}{2}$,k∈Z,
∵φ>0,
∴當(dāng)k=0時,φ的最小值為$\frac{π}{24}$.
故選:D.

點評 本題主要考查正弦函數(shù)的圖象,正弦函數(shù)的周期性和奇偶性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知橢圓Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點分別為F1,F(xiàn)2,過點F1,F(xiàn)2分別作兩條平行直線AB,CD交橢圓Г于點A、B、C、D.
(Ⅰ)求證:|AB|=|CD|;
(Ⅱ)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=asinx-x+b(a、b均為大于零的常數(shù)).設(shè)函學(xué)f(x)在x=$\frac{π}{3}$處有極值,對于一切x∈[0,$\frac{π}{2}$],不等式f(x)>sinx+cosx總成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一質(zhì)點的運動方程為S(t)=t2+2t,則該質(zhì)點在t=1時的瞬時速度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式$\frac{1}{x+4}$+$\frac{1}{x+5}$>$\frac{1}{x+6}$+$\frac{1}{x+3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax.
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)=0有兩個不相等的實數(shù)根x1,x2(x1<x2),求證:$\frac{1}{{x}_{2}}$<a<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=3cosx-$\sqrt{3}$sinx的圖象的一條對稱方程是( 。
A.x=$\frac{5π}{6}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{3}$D.x=-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=2,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a=-2${∫}_{0}^{\frac{π}{2}}$(sin2$\frac{x}{2}$-$\frac{1}{2}$)dx,則二項式(ax+$\frac{1}{2ax}$)9的展開式中x的一次項系數(shù)為(  )
A.-$\frac{63}{16}$B.$\frac{63}{16}$C.-$\frac{63}{8}$D.$\frac{63}{8}$

查看答案和解析>>

同步練習(xí)冊答案