14.設向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(2,x),若$\overrightarrow a$∥$\overrightarrow b$,則x=-6.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,∴-x-6=0,解得x=-6.
故答案為:-6.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{7}{3}$B.7C.13D.$\frac{{17+3\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AD,A1B1的中點.
(1)求證:DB1⊥CD1;
(2)求三棱錐B-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知平行六面體ABCD-A1B1C1D1,設A1D1中點為M,CD的中點為N,若∠A1AD=∠A1AB=∠BAD=60°且AA1=AB=AD=1,則|AC1|=$\sqrt{6}$,若$\overrightarrow{MN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,則x+y+z=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知tan(-α)=3,則$\frac{{{{sin}^2}α-sin2α}}{cos2α}$等于( 。
A.-$\frac{8}{3}$B.$\frac{8}{3}$C.-$\frac{15}{8}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設函數(shù)f(x)在(-∞,+∞)上有意義,對于給定的正數(shù)k,定義函數(shù)fk(x)=$\left\{\begin{array}{l}f(x),f(x)<k\\ k,f(x)≥k\end{array}\right.$,取k=3,f(x)=($\frac{k}{2}$)|x|,則fk(x)=$\frac{k}{2}$的零點有(  )
A.0個B.1個
C.2個D.不確定,隨k的變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合I={x∈Z|-3<x<3},A={-2,0,1},B={-1,0,1,2},則(∁IA)∩B等于( 。
A.{-1}B.{2}C.{-1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.圓x2+y2=1的切線與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于兩點A,B,分別以A,B為切點的$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的切線交于點P,則點P的軌跡方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.拋物線y=x2-2x-3與坐標軸的交點在同一個圓上,則交點確定的圓的方程為(x-1)2+(y+1)2=5.

查看答案和解析>>

同步練習冊答案