12.“xy=0”是“y=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由xy=0可得:x=0或y=0,即可判斷出結(jié)論.

解答 解:由xy=0可得:x=0或y=0,
∴“xy=0”是“y=0”的必要不充分條件.
故選:B.

點評 本題考查了方程的解法、充要條件的判定,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若C${\;}_{n}^{2}$=C${\;}_{n-1}^{2}$+C${\;}_{n-1}^{3}$(n∈N*),則($\root{3}{x}$-$\frac{1}{2\sqrt{x}}$)n的常數(shù)項為( 。
A.-6B.12C.$\frac{5}{2}$D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=A-Acos(ωx+φ)(A>0,ω>0,0<φ<π),且y=f(x)的最大值為2,其圖象相鄰兩條對稱軸間的距離為2,并過點(1,2).
(1)求φ;
(2)計算f(1)+f(2)+…f(2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,集合A={x|x<2},B={x|lg(x-1)>0},則A∩(∁uB)=( 。
A.{x|1<x<2}B.{x|1≤x<2}C.{x|x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)Sn為等比數(shù)列{an}的前n項和,a1=1,a2=3.
(1)求an,Sn
(2)若a3,Sn+5,a5成等差數(shù)列,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且($\overrightarrow{a}$+$λ\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則實數(shù)λ的值為( 。
A.-7B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題?p:存在x∈(1,2)使得ex-a>0,若p是真命題,則實數(shù)a的取值范圍為( 。
A.(e2,+∞)B.[e2,+∞)C.(-∞,e)D.(-∞,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=a(x-1)(ex-a)(常數(shù)a∈R且a≠0)
(Ⅰ)若函數(shù)f(x)在(0,f(0))處的切線與直線y=x垂直,求a的值;
(Ⅱ)若對任意x∈[1,+∞)都有f(x)≥x2-x,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{3+i}{1-i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案