分析 (1)先求出函數(shù)的定義域,求出函數(shù)f(x)的導(dǎo)函數(shù),在定義域下,a<0,令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間.
(2)F(x)=f(x)-g(x),F(xiàn)′(x)=-$\frac{a{x}^{2}+2x-1}{x}$,令F'(x)≤0在[1,4]上恒成立即可.
解答 解:(1)f(x)的定義域?yàn)椋?,+∞),則f′(x)=$\frac{1}{x}$+a,
當(dāng)a<0時(shí),令f′(x)>0,解得0<x<-$\frac{1}{a}$;令f′(x)<0,解得x>-$\frac{1}{a}$.
則f(x)的增區(qū)間為(0,-$\frac{1}{a}$),減區(qū)間為(-$\frac{1}{a}$,+∞).
(2)F(x)=f(x)-g(x),F(xiàn)′(x)=-$\frac{a{x}^{2}+2x-1}{x}$
依題意F'(x)≤0在[1,4]上恒成立,
即ax2+2x-1≥0在[1,4]上恒成立.
則a≥$\frac{1-2x}{{x}^{2}}$=($\frac{1}{x}$-1)2-1在[1,4]上恒成立,
即a≥(($\frac{1}{x}$-1)2-1)max(1≤x≤4)
當(dāng)x=4時(shí),($\frac{1}{x}$-1)2-取最大值-$\frac{7}{16}$,
∴a的取值范圍是(-$\frac{7}{16}$,+∞).
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)區(qū)間,考查運(yùn)用導(dǎo)數(shù)求單調(diào)區(qū)間,考查恒成立問題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 線段 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | [-1,1] | C. | [-2,2] | D. | [-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com