20.若a,b,c∈R,命題p:a<10,命題q:lg a<1,則p是q的(  )
A.充分必要B.充分不必要
C.必要不充分D.既不充分又不必要

分析 命題q:lg a<1,化為:0<a<10,可得由q⇒p,反之不成立.即可判斷出關(guān)系.

解答 解:命題q:lg a<1,化為:0<a<10,
∴由q⇒p,反之不成立.
∴p是q的必要不充分條件.
故選:C.

點(diǎn)評(píng) 本題考查了不等式的解法、函數(shù)的單調(diào)性、充分條件和必要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E為正方形ABCD的兩條對(duì)角線的交點(diǎn),點(diǎn)F是棱AB的中點(diǎn),則異面直線AC1與EF所成角的正切值為( 。
A.-$\sqrt{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計(jì)算:${({{m^{\frac{1}{4}}}{n^{-\frac{3}{8}}}})^8}$.
(2)比較大。簂og0.51.8,log0.52.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={-2},B={x|ax+1=0},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.NBA全明星周末有投籃之星、扣籃大賽、技巧挑戰(zhàn)賽和三分大賽四種項(xiàng)目,某高中為了鍛煉學(xué)生體質(zhì),也模仿全明星周末舉行“籃球周末”活動(dòng),同樣是投籃之星,扣籃大賽、技巧挑戰(zhàn)賽和三分大賽四種項(xiàng)目,現(xiàn)在高二某班有兩名同學(xué)要報(bào)名參加此次活動(dòng),每名同學(xué)最多兩項(xiàng)(至少參加一項(xiàng)),那么他倆共有多少種不同的報(bào)名方式( 。
A.96B.100C.144D.225

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以下結(jié)論正確的是( 。
A.若x0為函數(shù)y=f(x)的駐點(diǎn),則x0必為函數(shù)y=f(x)的極值點(diǎn)
B.函數(shù)y=f(x)導(dǎo)數(shù)不存在的點(diǎn),一定不是函數(shù)y=f(x)的極值點(diǎn)
C.若函數(shù)y=f(x)在x0處取得極值,且f′(x0)存在,則必有f′(x0)=0
D.若函數(shù)y=f(x)在x0處連續(xù),則f′(x0)一定存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x-1)lnx+1.
(1)求f′(e)(e為自然對(duì)數(shù)的底數(shù));
(2)求曲線f(x)在點(diǎn)(e,f(e))處的切線方程;
(3)若函數(shù)g(x)=$\frac{f(x)}{x}$,證明:g(x)>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在x=-$\frac{2}{3}$,x=1處都取得極值
(1)求a,b的值與函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若對(duì)x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)F1,F(xiàn)2,分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),其上頂點(diǎn)為A,且△AF1F2是斜邊長為2的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)F2,斜率為k的直線l交橢圓C于點(diǎn)D,E,交y軸于點(diǎn)P(如圖),問:是否存在實(shí)數(shù)k,使得△ODF2與△OPE的面積相等,如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案