11.已知函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$+x+1,若f(a)+f(a+1)>2,則實數(shù)a的取值范圍是a>-$\frac{1}{2}$.

分析 令g(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$+x+1,得到g(x)的單調(diào)性和奇偶性,將f(a)+f(a+1)=g(a)+1+g(a+1)+1>2,轉(zhuǎn)化為g(a)+g(a+1)>0,解出即可.

解答 解:令g(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$+x+1,則g(-x)=-g(x),是奇函數(shù),
又g′(x)=$\frac{{e}^{x}}{{{(e}^{x}+1)}^{2}}$+1>0,∴g(x)在R上遞增,
由f(a)+f(a+1)=g(a)+1+g(a+1)+1>2,
得:g(a)+g(a+1)>0,
∴g(a+1)>-g(a)=g(-a),
∴a+1>-a,解得:a>-$\frac{1}{2}$,
故答案為:a>-$\frac{1}{2}$.

點評 本題考察了函數(shù)的單調(diào)性和奇偶性問題,考察轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,則a的取值范圍是( 。
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C的對邊.已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),試判斷該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的流程圖,則輸出的S的值為$\frac{1008}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù),又在(0,π)上遞增的函數(shù)的個數(shù)是(  )
①y=tan|x|
②y=cos(-x)
③$y=sin({x-\frac{π}{2}})$
④$y=|{cot\frac{x}{2}}|$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>1}\\{(6-a)^{x}-2a,x≤1}\end{array}\right.$.
(1)若a=4,求f(f(2))的值;
(2)若f(x)是R上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,若此幾何體的表面積為(4+2$\sqrt{2}$)π+8,則底面半圓的半徑r等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行下列程序框圖,則輸出結(jié)果為(  )
A.413B.404C.397D.407

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某單位為豐富職工業(yè)余生活,舉辦知識有獎競答活動,活動共設(shè)三關(guān),第一、二關(guān)各有兩個必答題,如果每關(guān)兩個問題都答對,可進入下一關(guān),第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功.每過一關(guān)可一次性獲得價值分別為100元,300元,500元的獎品(可重復(fù)得獎),職工甲對三關(guān)中每個問題回答正確的概率依次為$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,且每個問題回答正確與否相互獨立.
(1)求甲過第一關(guān)但未過第二關(guān)的概率;
(2)求甲所獲獎品的價值不高于500元的概率.

查看答案和解析>>

同步練習(xí)冊答案